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It appears to be one of the few places in physics where there is a
rule which can be stated very simply, but for which no one has
found a simple and easy explanation. The explanation is deep
down in relativistic quantum mechanics. This probably means
that we do not have a complete understanding of the
fundamental principle involved.

RP Feynman, The Feynman Lectures on Physics, Vol III,
Chapter 4 (1964).

Abstract Exceptionally clear images of intramolecular structure can be attained in
dynamic force microscopy (DFM) through the combination of a passivated tip apex
and operation in what has become known as the “Pauli exclusion regime” of the
tip–sample interaction. We discuss, from an experimentalist’s perspective, a num-
ber of aspects of the exclusion principle which underpin this ability to achieve
submolecular resolution. Our particular focus is on the origins, history and inter-
pretation of Pauli’s principle in the context of interatomic and intermolecular
interactions.
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1 Intramolecular Resolution via Pauli Exclusion

In 2009, the results of a pioneering dynamic force microscopy (DFM1) experiment by
Leo Gross and co-workers at IBM Zürich were published [1] and revolutionised the
field of scanning probe microscopy. Gross et al. captured arguably the clearest real
space images of a molecule achieved up to that point, resolving the “textbook”
structure of the molecular architecture. Two important experimental protocols
enabled Gross et al.—and, subsequently, a number of other groups [2–8] (see Fig. 1
for examples)—to attain this exceptionally high resolution. First, the apex of the probe
was functionalised (by picking up a molecule) to render it inert. This enabled the
scanning probe to be placed extremely close to the adsorbed molecule of interest—so
close that the second experimental protocol, namely the exploitation of electron
repulsion via the Pauli exclusion principle (PEP),2 played a key role in the imaging
mechanism.

It is this second protocol which is the primary focus of this chapter.Wewill discuss
just how Pauli exclusion is exploited in state-of-the-art scanning probe microscopy,
what pitfalls there might be in interpreting features in DFM images as arising directly
from chemical bonds, and to what extent scanning probemeasurements of tip–sample
interactions provide deeper experimental insights into the exclusion principle itself.
We should also stress right from the outset that although we concentrate on DFM
throughout this chapter, prior to Gross et al.’s 2009 paper, Temirov, Tautz and co-
workers had achieved unprecedented spatial resolution using a technique for which
they coined the term scanning tunnelling hydrogen microscopy (STHM) [9–12].
Both STHM and thetype of DFM imaging introduced by Gross et al. [1] exploit Pauli
exclusion as a means to acquire exceptionally high resolution. Before covering the
exploitation of the exclusion principle in scanning probe microscopy, we will con-
sider a number of aspects of the fascinating history of Pauli’s Ausschließungsregel
[13] and outline some of the rich physics underpinning the principle.

2 A Potted History of the Pauli Exclusion Principle

Michela Massimi has written an authoritative and engaging history of the PEP [13],
which impressively combines clear explanations of the quantum and statistical
physics underlying the PEP with engaging discussions of both the history and the

1Although the term non-contact atomic force microscopy (NC-AFM) is widespread—to the extent
that the major conference in the field is the annual International NC-AFM meeting—it is arguably
something of a misnomer to label the technique “non-contact” when it is now commonplace to
operate in a regime where the probe is in contact with the sample. We will therefore use the term
dynamic force microscopy throughout this chapter.
2We shall return, in Sects. 4 and 5, to a detailed discussion of whether or not it is appropriate to
describe the effects of Pauli exclusion as a repulsive force.
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philosophical ramifications of the principle. As Massimi points out in the preface to
her book, her research on the origin and validation of the exclusion principle took
almost 10 years. For those readers interested in a comprehensive account of the
“evolution” of the PEP, we therefore strongly recommend Masimi’s book. Here, we
will limit ourselves to providing a brief summary of those aspects of the PEP which
are of key significance for (ultra-) high-resolution scanning probe microscopy.

The origins of the exclusion principle lie, like so many aspects of quantum
physics, in the interpretation of spectroscopic data. In particular, a series of so-
called anomalies in the spectra of alkali and alkaline earth metals, and, arguably
more importantly, the response of atomic spectra to the application of a magnetic
field, i.e. the (“anomalous”) Zeeman effect, became a major challenge to the Bohr–
Sommerfeld theory of the electronic structure of atoms in the early 1920s. It was
only with the introduction of what came to be known as electron spin—but which
Pauli initially called simply the electron Zweideutigkeit (“twofoldness”)—that the
spectroscopic data could be reconciled with the theoretical predictions. The intro-
duction of electron Zweideutigkeit [14] was followed very closely by Pauli’s
statement of the exclusion principle [15] (or, as it was known at the time, the
exclusion rule). Pauli subsequently won the Nobel Prize in 1945 for his discovery
of the exclusion principle.

It is worth quoting directly from Pauli’s Nobel Lecture, given on 13 December
1946, as this provides key insights into the original formulation of the principle
“straight from the horse’s mouth”, as it were:

On the basis of my earlier results on the classification of spectral terms in a strong magnetic
field the general formulation of the exclusion principle became clear to me. The funda-
mental idea can be stated in the following way:

The complicated numbers of electrons in closed subgroups are reduced to the simple number
one if the division of the groups by giving the values of the four quantum numbers of an
electron is carried so far that every degeneracy is removed. An entirely non-degenerate

b Fig. 1 Imaging bonds via the Pauli exclusion principle. a Combination of schematic illustration
and experimental data to demonstrate experimental protocol used to acquire submolecular
resolution. The apex of the probe of a dynamic force microscope is passivated (in this case with a
CO molecule) and scanned across a pentacene molecule at a height where Pauli exclusion plays
a key role in determining the tip–sample interaction. b Experimental frequency shift image for a
pentacene molecule [a and b taken from Gross et al. [1]. © American Association for the
Advancement of Science (2009)]. c Dynamic force microscope image of four 8-hydroxyquinoline
molecules. Both intra- and intermolecular features are observed (See Sect. 7). d Schematic diagram
of molecular arrangement shown in c with the expected positions of hydrogen bonds drawn as
lines between the molecules [c and d taken from Zhang et al. [3]. © American Association for the
Advancement of Science (2012)]. e High-resolution image of a chain of oligo-(E)-1,1-bi
(indenylidene) with associated structural model. Taken from Riss et al. [8]. © American Chemical
Society (2014). f DFM image of two different conformers of dibenzo[a,h]thianthrene on a NaCl/Cu
(111) substrate with (lower panel) structural models of both conformers. Taken from Pavlicek
et al. [6]. © American Physical Society (2012). g Structural model of a naphthalenetetracarboxylic
diimide (NTCDI) molecule and a DFM image of a hydrogen-bonded assembly of NTCDI
molecules. From Sweetman et al. [4]. © Nature Publishing Group (2014)
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energy level is already closed, if it is occupied by a single electron; states in contradiction
with this postulate have to be excluded.

Or, if we couch this in the lexicon of modern quantum mechanics, no two
electrons can have the same values of n, l, ml and ms (i.e. the principal, orbital
angular momentum, magnetic and spin quantum numbers). More succinctly, no two
electrons can occupy the same quantum state. (The PEP of course holds for all
fermions (half-integer spin particles), not just electrons. We will return to this point
very soon).

Pauli’s Zweideutigkeit is now of course known as particle spin, but the inferred
connection with the classical concept of a spinning object is unfortunately mis-
leading. Indeed, Pauli himself switched from being firmly opposed to any con-
nection between his Zweideutigkeit and spin, to a somewhat grudging acceptance of
a link, and then, as his Nobel lecture highlights, back to a significant degree of
scepticism about the value of any classical analogy:

On the other hand, my earlier doubts as well as the cautious expression “classically non-
describable two-valuedness” experienced a certain verification during later developments,
since Bohr was able to show on the basis of wave mechanics that the electron spin … must
therefore be considered as an essentially quantum mechanical property of the electron.

2.1 Particle Statistics and the Quantum Identity Crisis

Following hot on the heels of Pauli’s publication of the exclusion principle, first
Fermi [1, 16, 17] and then Dirac [18] explored the quantum statistics of an ideal gas
of particles which was subject to the exclusion principle. Dirac coined the term
fermion to describe a particle subject to the Fermi–Dirac statistics he and Fermi
derived; a fermion is therefore a particle which obeys the PEP (and concomitantly is
of half-integer spin). At the very heart of quantum statistics—and, indeed, of
classical statistical mechanics—lies the issue of the distinguishability of particles.3

A simple back-of-the-envelope argument based on the (in) distinguishability of
particles can provide a helpful insight into the origin of the exclusion principle [19].

Before we introduce that back-of-the-envelope approach, however, it is first
important to define just what it is we mean by indistinguishable particles. This,
despite first appearances, is a far from trivial question to address and has been the
subject of quite considerable debate and interest for many decades. De Muynck
[20], Berry and Robbins [21], Ginsberg et al. [22] (see also Fleischhauer [23] for a
very readable overview of Ginsberg et al.’s work), Omar [24], and Dieks and
co-workers [1, 25, 26], amongst many others, have considered and explored the
important issue of how indistinguishability and quantum statistics are intrinsically

3Long before the advent of quantum mechanics, the effect of considering indistinguishable versus
distinguishable particles on the partition function for a system was known as the Gibbs paradox in
classical thermodynamics/statistical mechanics.
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coupled. We shall not delve into the detailed arguments—be they physical,
philosophical or semantic in scope—and instead restrict ourselves to the following
relatively simple, although certainly not “universal”, definitions. (It is also impor-
tant to note that the condition for antisymmetry and the exclusion principle are not
equivalent statements).

First, we draw a distinction between identical and indistinguishable particles.
Identical particles are those which have the same intrinsic (or “internal”) properties
(and the same values associated with those intrinsic properties), i.e. mass, charge
and spin. So two electrons are identical to each other. And two protons, or two
neutrons, are similarly identical to each other. But electrons are clearly not identical
to protons, nor to neutrons. (We apologise for labouring the point to this extent, but
the terms “identical” and “indistinguishable” are often used interchangeably—
including in many textbooks—and this has led to quite some confusion at times).

If we have a collection of identical particles, then they are indistinguishable if
we cannot separate them on the basis of their “external” properties such as position
or momentum. But classically, it is possible to distinguish between identical par-
ticles (at least in principle): we can effectively “label” individual identical particles
on the basis of their positions or trajectories and distinguish them accordingly.4

Quantum mechanically, however, the standard argument is that due to delocalisa-
tion, we lose this ability to label particles on the basis of their trajectories and they
then become indistinguishable.

But to what extent is this true? Are quantum particles indeed indistinguishable?
One can find undergraduate-level descriptions of quantum statistics [30] which
claim that quantum particles can in fact be distinguished on the basis of what might
be called a “Rayleigh criterion” for wave packets: if two particles are separated by a
distance greater than their de Broglie wavelength (i.e. such that the wave function
overlap is minimal), then they are distinguishable on the basis of their respective
positions. Versteegh and Dieks [27] invoke similar arguments about the spatial
extent of wave packets enabling identical quantum particles to be distinguished.

However, whether this is a valid condition for distinguishability is far from clear-
cut. In his commentary on Ginsberg et al.’s work [22], Fleischhauer [23] states the
following:

In the quantum world, particles of the same kind are indistinguishable: the wave function
that describes them is a superposition of every single particle of that kind occupying every

4In a thought-provoking paper, Versteegh and Dieks [27] discuss the importance of the distin-
guishability of identical particles and what these mean for classical thermodynamics and statistical
mechanics, including the Gibbs paradox. We note, however, that there is a very important
omission in the list of papers cited by Versteegh and Dieks, namely a paper by Jaynes [28] who
makes the point, following a similar analysis by Pauli, that the classical thermodynamic definition
of entropy as the integration of dQ/T/ over a reversible path is only introduced in the context of
constant particle number. This means that there is always (ultimately, see Ehrenfest and Trkal [29])
an arbitrary integration function (not an integration constant, but a function of N) that can be used
to yield the desired extensivity of the entropy.
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allowed state. Strictly speaking, this means that we can’t talk, for instance, about an
electron on Earth without mentioning all the electrons on the Moon in the same breath.

Why might Fleischhauer say this?5 The answer is, from one perspective at least,
rather straightforward. The universal superposition to which Fleischhauer refers
arises because in reality, we never have perfect confinement of particles: there is no
such thing as the infinite potential well beloved of introductory quantum physics
courses, and there is therefore some finite (albeit extremely small) probability for
tunnelling. Thus, in this sense, an electron on the Earth is indeed indistinguishable
from an electron on the Moon (or on Alpha Centauri).

But what really matters, of course, are the effects that this type of “coupling”
might have on experimental measurements. And for electrons separated by centi-
metres, let alone light years, those effects are, to put it mildly, utterly negligible. If
we consider a “double-well” system for an electron on Earth and an electron on
Alpha Centauri, the energy-level splitting is unimaginably tiny (and beyond any-
thing, we could ever begin to hope to measure), and the timescale for evolution of
the quantum state exceeds the age of the universe.

So in any practical sense, position can indeed be used to distinguish quantum
particles. This is why we can treat electrons in well-separated atoms as being
distinguishable. In principle, the electrons are indeed described by a single multi-
particle (“universal”) wave function and are thus indistinguishable. In practice,
however, the spatial extent of the particle wave packet is such that we can treat
electrons in atoms separated by distances much greater than their equilibrium bond
length as distinguishable. Only when those atoms are brought together so that there
is appreciable overlap of electronic wave functions, as in chemical bond formation
or, as we shall discuss below, a DFM experiment can one state that the electrons on
each atom become indistinguishable.

Following this lengthy “detour” on the topic of distinguishability versus indis-
tinguishability, we are now finally at the point where we can return to a consideration
of that back-of-an-envelope argument for the PEP which was mentioned above.

3 Statistics, Symmetry and Spin

Let us take a system where identical quantum particles cannot be distinguished
from another. As the particles are indistinguishable then when we compute the
probability density for the system, i.e. jWj2, we must get the same answer regardless

5It is perhaps worth noting at this point that the “interconnectedness” to which Fleischhauer alludes
in this quote, and its relevance (or not) to the Pauli exclusion principle, was the subject of a great
deal of sometimes ill-tempered online debate following the BBC’s broadcast of a popular science
lecture on quantum mechanics by Brian Cox, which included a discussion of the PEP. Jon
Butterworth’s post for The Guardian [31] is a short, clear and entertaining discussion of the furore
and the physics surrounding Cox’s lecture.
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of how we arrange the particles, i.e. their spatial positions have no influence on the
probability density. We will consider a very simple system with just two particles
whose positions are r1 and r2 and whose single particle wave functions are w1 and
w2, respectively. If we cannot distinguish Particle 1 from Particle 2, then it is clear
that

jWðr1; r2Þj2 ¼ jWðr2; r1Þj2 ð1Þ

This means one of two things. Either

Wðr1; r2Þ ¼ Wðr2; r1Þ ð2Þ

or

Wðr1; r2Þ ¼ �Wðr2; r1Þ ð3Þ

To meet the condition imposed by Eq. 2, we must have the following two-
particle wave function:

Wðr1; r2Þ ¼ 1ffiffiffi
2

p ðw1ðr1Þw2ðr2Þ þ w2ðr1Þw1ðr2ÞÞ ð4Þ

Or to satisfy Eq. 3, we need the following:

Wðr1; r2Þ ¼ 1ffiffiffi
2

p ðw1ðr1Þw2ðr2Þ � w2ðr1Þw1ðr2ÞÞ ð5Þ

Equation 4 represents what is called the symmetric case, while Eq. 5 is termed
the antisymmetric case.6 The antisymmetric equation leads us to a simple, but
exceptionally important, result—a result that is at the very core of how the universe
behaves because it is ultimately responsible for the stability of matter [32–34]. Note
what happens when we make w1 ¼ w2 in Eq. 5 (or, in other words, we put both
particles in the same quantum state): the two-particle wave function, W, vanishes.
This is the essence of the PEP: in the antisymmetric case, no two particles can exist
in the same quantum state.7 (We should also stress that the exclusion principle is
not equivalent to the statement that fermions have antisymmetric wave functions.

6The use of the terms symmetric and antisymmetric follows from Eq. 2 (where W is a symmetric
function with respect to the exchange of coordinates) and Eq. 3 (where W is an antisymmetric
function). Note also that the factor of 1ffiffi

2
p in Eqs. 4 and 5 arises from normalisation of the wave

function.
7We are neglecting explicit consideration of the spin contribution here—see Sect. 3.1. Moreover,
we are making drastic simplifications regarding the treatment of many electron systems in order to
put across the “essence” of the exclusion principle. For example, Eqs. 4 and 5 are approximations
because, in reality, there are many more contributing terms (as in the configuration interaction
method of quantum chemistry. See Kantorovich [35] for a summary).
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Rather, the exclusion principle follows from the antisymmetric character of
fermions).

A rather remarkable observation is that only antisymmetric and symmetric wave
functions are found in nature for fundamental particles, i.e. we only have bosons
(symmetric state) and fermions (antisymmetry). No other particles have been found
that fall outside these symmetry classes.8 As Omar [24] points out in a compre-
hensive and very readable review of the ramifications of indistinguishability in
quantum mechanics, this existence of only symmetric and antisymmetric states9 is
best described as a postulate (the “symmetrisation postulate”). And, disconcert-
ingly, it is a postulate that apparently cannot be deduced from the framework of
quantum mechanics (either the non-relativistic or relativistic “breeds” of the the-
ory). In other words, we simply have to accept that only bosons and fermions exist
(or, at least, we have no good experimental evidence to date for fundamental
particles arising from other rather more exotic statistics/symmetries such as par-
astatistics, see Omar [24]). In this sense, we have progressed very little since Pauli
voiced his misgivings about the origin of the exclusion principle almost seventy
years ago:

I was unable to give a logical reason for the Exclusion Principle or to deduce it from more
general assumptions… in the beginning I hoped that the new quantum mechanics would
also rigorously deduce the Exclusion Principle.

3.1 Putting a Spin on the Story

All known fundamental particles are either bosons or fermions. (Within the stan-
dard model, fermions are “matter” particles, whereas bosons are generally force
“carriers”.10 Again, we are not including quasiparticles in the discussion.). All
bosons have integer spin, while fermions have half-integer spin. Clearly, there must
be a strong connection between spin and symmetry. Indeed, this is known as the
spin–statistics theorem and holds not just for individual particles but composites of
fundamental particles.

This link between spin, statistics and the exclusion principle, however, very
much appears not to be something that can be deduced from non-relativistic

8Note, however, that the key principle underlying the concept of supersymmetry is that bosons can
be converted into fermions and vice versa. Supersymmetry therefore introduces a bosonic partner
for every fermion (and, again, vice versa). To the chagrin of (some of) the particle physics
community, however, any evidence for supersymmetry remains frustratingly elusive. Moreover,
we are omitting any discussion of quasiparticles here. The results of measurements of two-
dimensional systems exhibiting the fractional quantum Hall effect have been interpreted in terms of
anyons [36] and quasiparticles with mixed symmetry.
9…for the total wave function. Again, see Sect. 3.1.
10…although the Higgs boson is an honourable exception.
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quantum mechanics. This is the origin of the statement from Feynman quoted at the
start of this chapter—the link between spin and the exclusion principle is “deep
down” in relativistic quantum mechanics. More recently, Bartalucci et al. [37] have
put it like this:

Although the principle has been spectacularly confirmed by the number and accuracy of its
predictions, its foundation lies deep in the structure of quantum field theory and has defied
all attempts to produce a simple proof…

This means that within the non-relativistic quantum framework, the spin–
statistics–symmetry link is generally accepted as a dictum, although alternative non-
relativistic approaches have certainly been explored [21]. Duck and Sudarshan [38]
detail a proof of the spin–statistics theorem which can be “recast” in non-relativistic
quantum field theory, but only if an aspect of their proof which stems from rela-
tivistic quantum theory (via Lorentz invariance) can be invoked as a postulate.

Notwithstanding its essential relativistic origin, the spin contribution can be
incorporated into the particle wave function in non-relativistic quantum mechanics
in a straightforward fashion via the introduction of the spin orbital. A spin orbital is
a product of a spatial wave function (such as those described in the preceding
section) and a spin function, which we can represent as vð"Þ or vð#Þ for the spin-up
and spin-down states, respectively. So, if we use x as a variable which incorporates
both the spatial and spin coordinates, and we switch to using / to represent only the
spatial part (so that we can, as per convention, use w to represent the wave func-
tion), we have the following for the spin-up state of an electron:

wðx1Þ ¼ /ðr1Þvð"Þ ð6Þ

We therefore now have two options for ensuring antisymmetry in a two-electron
(or multi-electron) system: either the spatial part or the spin part can lead to an
antisymmetric total wave function, Wðx1; x2Þ. In other words, if two electrons have
opposite spin states, then there is no constraint on the spatial wave function. But
this is nothing more than the statement of the PEP given earlier: no two electrons
can exist in the same quantum state.

4 The Origin of Pauli Repulsion: A Gedankenexperiment

At short interatomic or intermolecular separations, Pauli repulsion11 is much
stronger than any electrostatic interaction, increasing very rapidly with decreasing
distance between atoms or molecules. Recall, for example, that the Pauli repulsion
term in the Lennard–Jones potential is modelled not with a 1

r dependence, as one
would expect for a classical electrostatic interaction (between point charges), but

11We focus throughout this chapter only on fermions. For bosons, and as discussed by Mullin and
Blaylock [39], an effective attractive force is often invoked.
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with a 1
r12 function. This 1

r12 dependence is, of course, purely empirical in the
Lennard–Jones (L-J) potential—it has no grounding in theory—but, nonetheless,
the exceptionally high sensitivity of the repulsive interaction to small changes in
interatomic/intermolecular separation is captured well by the functional form.

Of course, and as Baerends [40] discusses in a clear overview of Pauli repulsion
effects in adsorption, we are dealing not with point charges and a pure Coulombic
interaction but with a screened Coulomb potential and delocalised electron
“clouds”. The overlap of the electron clouds at short separations leads in a classical
model, and perhaps counter-intuitively, to an attractive electrostatic interaction. It is
only when the interatomic separation becomes so small that nuclear repulsion
dominates that the overall electrostatic force becomes repulsive.

Thus, and as we hope is abundantly clear from previous sections, we cannot
expect to understand electron repulsion due to Pauli exclusion in the context of
classical electrostatics. The fundamental origin of the repulsion comes from, as we
have seen, the physical impossibility of “squeezing” two fermions into the same
quantum state. But the central question is this: just how does the exclusion principle
translate into a physically measurable interaction? We will see in the following
section how DFM allows us to directly probe the exclusion-derived repulsion
between the electron density of two atoms or molecules. Before we consider the
results of the real-world experiment, however, it is very helpful to think about a
“stripped-down” system involving the overlap of two single particle wave functions
(see Sect. 3) [41–43]. This “Gedankenexperiment”, if you will, provides compelling
insights into the origin of Pauli repulsion.

First, recall that the kinetic energy operator is � �h2

2mr2. The curvature of a wave
function therefore determines its kinetic energy (via the Laplacian, r2). Wilson and
Goddard’s approach [41] to elucidating the origin of Pauli repulsion was to com-
pare the kinetic energy (KE) of a Hartree product of the wave functions for two
same-spin electrons with the KE of an antisymmetrised product (see Fig. 2).
A Hartree product is simply the following:

WHartðr1; r2Þ ¼ wðr1Þwðr2Þ ð7Þ

As should be clear from Sect. 3, the multiparticle wave function WHart is not
antisymmetric (nor does it take into account indistinguishability of the particles)
and is therefore in general not appropriate to use to describe fermions. However, we
can take the Hartree product as a representation of the system when the PEP is
“suppressed” and determine the resulting kinetic energy.

In order to incorporate Pauli exclusion, we have to consider a multiparticle wave
function which is appropriately antisymmetrised. Slater introduced an elegant
method of enforcing this antisymmetry requirement via the determinant approach
which now bears his name [44]. Wilson and Goddard [41] focussed on the
orthogonality of orbitals which is generally imposed in approaches which treat the
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multiparticle wave function in terms of (a sum of) Slater determinants (see Fig. 2,
taken from the PhD thesis of Julius Su [45]). We note, however, that orthogonality
is a constraint on the multiparticle wave function that is not strictly necessary [35]
and, as discussed by Beylkin et al. [46], leads to ever-increasing levels of com-
putational expense as the size of a system grows.

Nonetheless, to ensure antisymmetry (i.e. the requirement of Eq. 5), wave
function slope and curvature must necessarily increase and thus, the overall picture
emerging from Fig. 2 is correct (even if one does not invoke orthogonality as the
root cause of the increase in wave function curvature). This change in curvature
results in a corresponding increase in kinetic energy. A complementary explanation
from a Fourier analysis perspective, as noted in the following section, is that the
increase in curvature of the wave function necessitates the introduction of higher
spatial frequency contributions, i.e. higher momentum components). It is this
increase in KE (or momentum) which is responsible for the majority of Pauli
repulsion.

There are two important assumptions built into this description of Pauli exclu-
sion, however. First, we have adopted a “pairwise” approach to considering elec-
tron–electron interactions when, in reality, Pauli exclusion is an n-body, rather than
a two-body problem. The second, and related, issue is that the modification of the
wave function due to orthogonalisation will mean that the electron density will be
distributed differently, affecting electron–electron interactions and giving rise to the
effect known as correlation. Interactions between same-spin electrons go by the
name Fermi correlation, whereas those between opposite-spin electrons are known
as Coulomb correlation.12 Nonetheless, the dominating contribution to Pauli
repulsion is the pure quantum mechanical component arising from wave function
antisymmetry.

Fig. 2 The effective repulsion due to Pauli exclusion stems from the change in the curvature of the
wave function due to the requirement for antisymmetrisation in fermion systems. One approach to
visualising this is to consider the orthogonalisation of orbitals (which is placed as a constraint on
Slater determinant approaches to constructing a multiparticle wave function). Higher wave
function curvature leads to a higher kinetic energy. Equivalently, higher curvature is accounted for
in Fourier space by higher spatial frequency (momentum) components. Figure taken from the PhD
thesis of Julian Su [45]. © Julian Su (2007)

12The combined contributions of the exclusion principle and electron correlation produce the
exchange-correlation contribution to the functional in density functional theory.
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5 Is There a Pauli Exclusion Force?

Having spent much of the chapter up to this point using the term “Pauli repulsion”,
it might seem a little perverse for us to now pose the question as to whether there is
a Pauli exclusion force or not (particularly as the experimental technique we are
considering is DFM). Notwithstanding the use of “Pauli repulsion” or “Pauli
exclusion force” in the DFM literature—and, more broadly, throughout very many
areas of science (spanning, for example, particle physics, single-molecule imaging
and spectroscopy, astrophysics13 and cosmology)—a number of authors have made
the claim that Pauli exclusion does not produce a force in the traditional sense.
Mullin and Blaylock [39], in particular, present a set of arguments as to why they
are of the opinion that couching the effects of Pauli exclusion in terms of a repulsive
force, or exchange force, can be rather misleading. Indeed, they go so far as to
argue—and we quote directly from their paper—that “there is no real force due to
Fermi/Bose symmetries”, citing, amongst others, Griffiths’ description of the effects
of Pauli exclusion [48]:

We call it an exchange force but it is not really a force at all—no physical agency is pushing
on the particles; rather it is purely a geometric consequence of the symmetrization
requirement.

What does Griffiths (and, by extension, Mullin and Blaylock) mean by this?
To back up their assertion that Pauli “repulsion” is not a force in the traditional

sense, Mullin and Blaylock consider a number of “archetypal” physicochemical
phenomena where the exclusion principle plays a key role. Arguably, the most
instructive of these is their discussion of the changes in momentum in a classical
gas as compared to a Fermi gas. We encourage the reader to follow the detail of the
analysis in Section II of their paper (under the subsection entitled Virial Expansion)
and restrict ourselves here simply to highlighting the central point they make.

Consider first a classical ideal gas in a container. Pressure, P, arises from the
combined impacts of each atom of that gas on the walls of the container and is
given by the force per unit area. Force, in turn, is the rate of change of momentum.
The mean force, �F, which each individual molecule of the gas contributes, is
�F ¼ Dp=Dt, where Dp is the momentum change on striking the wall. (This is twice
the atomic momentum because the sign of the momentum flips on collision). Dt is
the time required for an atom to cross the container, i.e. Dt ¼ mL=�p where L is the
width of the container and m is the atomic mass. The key point in the classical case
is this: if we make the volume of an ideal gas smaller or we introduce repulsive
interactions (with no change in temperature), the pressure of the gas will rise
because of a decreased Dt due to a change in (the effective) L arising from colli-
sions, but �p remains the same. (Recall that for a classical gas, the root-mean-square
momentum, prms is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3mkBT

p
).

13The Pauli exclusion principle prevents the collapse of white dwarf and neutron stars. See [47].
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Compare this to what happens for a Fermi gas subject to the exclusion principle.
The effect of the exclusion principle is to modify the momentum distribution.
Mullin and Blaylock argue that this is subtly different to what happens for the
classical gas when repulsive interactions are introduced. Classically, the repulsive
forces raise the pressure of the gas because the collisions and deflections of the
atoms change the atomic transit time. Quantum mechanically, the momentum
distribution is “intrinsically” modified because of the higher curvature of the wave
function which results from the exclusion principle. Position and momentum are
conjugate variables and are thus two sides of the same coin—Fourier transforma-
tion allows us to switch between the two (entirely equivalent) representations. The
higher wave function curvature demanded by Pauli exclusion is entirely equivalent
to stating that higher spatial frequency components are required in reciprocal
(i.e. momentum) space.14 It is this intrinsic symmetry-driven modification of the
momentum distribution which raises the pressure of the Fermi gas.

It is worth lifting another couple of quotes from Mullin and Blaylock’s paper to
highlight just how strongly opposed they are to equating Pauli exclusion with a
repulsive force:

The idea of an effective repulsion between fermions ignores the real physics and gives a
very poor analogy with classical repulsive gases…we offer the following guiding principle
regarding statistical symmetries: “May the force be not with you”.

Is this degree of antiforce scepticism justified, however?

6 Beyond Gedanken: Exploiting Exclusion in Force
Microscopy

At this point, the pragmatic scanning probe microscopist could quite reasonably
take issue with the preceding arguments because the primary experimental obser-
vable in a DFM experiment is the frequency shift of the probe. And this, via the
Sader–Jarvis formalism [49], for example, can be converted directly to a tip–sample
force. The effects of Pauli exclusion are directly measurable in DFM because they
shift the resonant frequency of the probe–cantilever system, and this ultimately can
be interpreted as a change in the tip–sample force. Notwithstanding the arguments
put forward by Mullin and Blaylock [39], and Griffiths [48], amongst others, if
Pauli exclusion is not giving rise to a force, then it certainly very much looks like it
in a DFM experiment.

The resolution of this apparent conflict may lie, as Moll et al. have discussed in a
recent paper focussed on the interpretation of submolecular resolution DFM images
[50], in the virial theorem. Slater showed in the 1930s that the virial theorem can be
applied to a molecule [51], assuming that the nuclei are fixed in place by external

14This, of course, is the fundamental origin of the Heisenberg uncertainty principle.
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forces. The total electron energy, E, is related to the electronic kinetic energy, T,
and potential energy, V, as follows:

T ¼ �E � r
dE
dr

� �
ð8Þ

V ¼ 2E þ r
dE
dr

� �
ð9Þ

The electronic kinetic energy and potential energy are thus coupled via the virial
theorem. Moll et al. [50] claim that, despite the Pauli exclusion force being non-
conservative in character, if it is assumed that we have a diatomic (or dimolecular)
system with one degree of freedom—as is the case for the tip–sample system in
DFM—the Pauli energy and the increase in electronic kinetic energy can be related
as follows:

EPauliðzÞ ¼ 1
z

Z1

z

DEkinðz0Þdz0 ð10Þ

where z is the interatomic/intermolecular separation. The issue of extracting
accurate measures of non-conservative forces from the frequency shift observable
in DFM, however, continues to attract considerable debate and discussion. For
example, the Sader–Jarvis inversion technique [49] widely applied to extract forces
from frequency shift versus separation curves must, as John Sader and his co-
authors themselves highlight [52], be applied with great care under conditions were
there is a significant contribution from non-conservative forces.

Although the authors cited in the previous section propose reasons for drawing a
distinction between a traditional force and the effects arising from Pauli exclusion,
the increase in kinetic energy and momentum resulting from the requirement for
wave function antisymmetry nonetheless ultimately result in an interaction which is
measured as a repulsive force in a DFM experiment. That is, the connection between
the change in kinetic energy and the total energy of the tip–sample system appears to
result in a measurable, and positive (i.e. repulsive), contribution to the frequency shift
due to the PEP. What is important to realise from the previous sections, however, is
that Pauli exclusion really is not comparable to other types of interparticle interaction.
In this sense, it is a phenomenon which is distinct from the four fundamental forces,
i.e. strong, weak, electromagnetic (in particular) and, if the graviton exists, gravity.

6.1 Intramolecular Imaging

Although DFM’s “sibling” technique, scanning tunnelling microscopy (STM), has
long been capable of submolecular resolution imaging, in the sense that molecular

Pauli’s Principle in Probe Microscopy 15

philip.moriarty@nottingham.ac.uk



orbital density can be probed (see an earlier volume of this Springer series on Atom
and Single Molecule Machines [53]), only DFM is capable of resolving the
chemical framework or atomic structure of a molecule. This is because STM probes
orbital density only within a specific energy window (set by the potential difference
between the tip and sample), and in conventional tunnelling microscopy, therefore,
only the frontier molecular orbitals are accessible.15 The spatial distribution of the
frontier orbital density generally does not map onto the atomic positions and indeed
often bears very little relationship to the “ball-and-stick” models of molecules so
familiar to chemists and physicists.

As Giessibl has highlighted [54], however, DFM is not restricted to probing the
frontier orbital density and is sensitive to the total charge density. This is because
intramolecular forces depend on the total electron density, rather than the density of
states within a certain energy window [55]. The sensitivity of DFM to the total
electron density is particularly pronounced when in the Pauli exclusion regime of
imaging, i.e. at very small tip–sample separations. Figure 1 at the start of this
chapter shows very clearly that, unlike STM, DFM in this Pauli exclusion regime
produces images which are remarkably similar to the ball-and-stick structural
models of molecules.

On the basis of Fig. 3 (and related theoretical and experimental data), Moll et al.
[50] argue that there is a close connection between the charge density of a molecule
and the increase in electron kinetic energy due to Pauli exclusion. This assumes that
(a) the arguments regarding wave function curvature outlined in Sects. 4 and 5
provide an accurate model of electron–electron interactions at the tip–sample
junction, and (b) the dominant effect is the change in kinetic energy and that this
can be “deconvolved” from the overall response of the electron density as a
function of the tip–sample separation. They approximate the complicated rela-
tionship between the increase in kinetic energy and the separation of two atoms
with different nuclear charges (see Eq. 6 of their paper) as follows:

DEkinðzÞ ¼ AqsðzÞB ð11Þ

where z is the interatomic/intermolecular separation, qðzÞ is the sample charge
density at separation z, and A and B are two tunable parameters. As can be seen in
Fig. 3, this simple power law model, which involves no explicit consideration of the
probe, provides good agreement with experimental frequency shift images of a
3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) molecule. We also include
in Fig. 3, again from Moll et al.’s paper, a comparison of the charge density of the
PTCDA molecule with the increase in kinetic energy calculated using the simple
model of Eq. 11. There is again apparently good agreement, adding support to the
idea that DFM is sensitive to the total charge density of the system.

15In the scanning tunnelling hydrogen microscopy (STHM) [9–11] variant of STM mentioned
earlier, this constraint can be circumvented.
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What is not included in the model used to generate the simulated images in
Fig. 3—although Moll and co-workers deal with this point elsewhere [56]—is the
relaxation or bending of the CO molecule at the tip apex as it is moved across the
underlying PTCDA molecule. It turns out that this is an extremely important
contribution to the observation of intramolecular and intermolecular contrast in
DFM images and we will return to it in the final section.

6.2 Density Depletion

The modification of the curvature and spatial extent of the tip–sample wave
function due to Pauli exclusion produce extensive modification to the total electron
density of the system. A key aspect of this is the generation of regions of density
depletion. Baerends [40] discusses the importance of density depletion in the
context of the Ag–O bond where a substantial degree of Pauli exclusion-derived
depletion around the centre of the bond is observed.

As a more recent example in the context of DFM, a number of the authors of this
chapter have explored the importance of density depletion in the interpretation of
images taken in the Pauli exclusion regime. The molecular system we used is that
shown in Fig. 1g—a hydrogen-bonded assembly of naphthalenetetracarboxylic
diimide (NTCDI) molecules on a passivated silicon surface. Figure 4 shows a

Fig. 3 Comparison of a experimental frequency shift image and b a simulated frequency shift
image for a 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) molecule calculated on the
basis of the Pauli exclusion-derived change in electron kinetic energy. c Charge density of a
PTCDA molecule at a given tip–sample separation. Compare with d the change in kinetic energy
at the same tip–sample separation. Figure adapted from Moll et al. [50]. © Institute of Physics
Publishing (2012)
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comparison of the total electron density for an NTCDI assembly versus the density
difference at a number of different z positions of the tip above a C–C bond
(Fig. 4a–c) and above an intermolecular region where hydrogen bonding is
expected [4]. Pauli exclusion results in strong tip-induced electron depletion above
both the intermolecular and intramolecular bond regions.

The most important insight to be derived from this analysis of density depletion
is that, as is always the case in any type of scanning probe experiment (and as is
well-understood across the SPM community), the influence of the tip on the
imaging process must always be carefully considered. Tip–sample interactions and
convolution have been an issue for STM since its invention, of course, but with the
advent of DFM imaging in the so-called Pauli regime, the probe can certainly no
longer be treated as just a perturbation of the electronic structure. The tip–sample
separation for the type of high-resolution images shown in Fig. 1 is such that the
repulsive Pauli component makes a strong contribution—the tip interacts heavily

Fig. 4 Total electronic density (TED) and electron density difference (EDD) calculated for an
NTCDI assembly plotted 100 pm above the molecular plane for a variety of different tip heights.
At each tip height in a simulated F (z) curve, the EDD was obtained by first calculating the TED
for (i) the isolated surface and (ii) the isolated NTCDI tip. These two densities were then summed
together and subtracted from the relaxed total density for the full system. The remaining quantity is
the EDD. This quantifies the fraction of charge which is redistributed due to the interaction of the
DFM tip and the NTCDI molecule. The TED (left) and EDD (right) are shown for an oxygen-
down NTCDI probe molecule at a–c the C–C location on an NTCDI molecule, and d–f at the
intermolecular H-bond location for the different tip heights specified in each figure. Figure from
Sweetman et al. [4]. © Nature Publishing Group (2014)
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with the underlying molecule adsorbed on the sample surface. In this sense, the
sample–tip apex system should be considered as one large molecule.

In the following, and final, section of this chapter, we will see just how important
a role the tip can play in generating high-resolution DFM images.

7 But Do We Really See Bonds?

A key “ingredient” in attaining intramolecular contrast in DFM is the passivation of
the tip apex. Gross et al. [1] first showed that CO was a particularly appropriate
molecule to use for imaging submolecular structure. (In the same paper, and in
subsequent work [57], they compared the imaging capabilities of CO with those of
other species adsorbed at the tip apex). Although deliberate functionalisation with
CO is certainly not necessary to obtain intra- (and inter-)molecular contrast [4],
carbon monoxide remains the molecule of choice at present for high-resolution
DFM.

It turns out that CO is very far from a rigid probe, however, and the tilting of the
molecule at the tip apex plays an essential role in the imaging process. The flexi-
bility of CO has been studied in some detail by a number of groups [1, 56, 58–60],
but it is a very recent paper [5], available only at the condensed matter arXiv at the
time of writing, on which we would like to focus here. This paper provides par-
ticularly telling insights into the extent to which the probe itself contributes to the
structure seen in molecular and submolecular images.

Hapala et al. [5] use an exceptionally simple, but remarkably powerful, model to
simulate DFM (and STHM [9–11]) images acquired either with a CO probe or with
any other type of tip apex. They represent the tip–sample geometry as shown in
Fig. 5 and account for interactions between the probe and sample molecule using
analytical Lennard–Jones potentials. It is very important to note that no account is
taken of intra- or intermolecular charge density in this model: the approach
adopted by Hapala et al. uses only the coordinates of the atoms within the molecule
under study—electron density due to bonding between those atoms is not incor-
porated in their model. In other words, the force field does not rely on the electron
density of the system. Although this might at first glance appear to be a rather crude
approach (as compared to, for example, modelling the system using an ab initio
method such as density functional theory), it is nonetheless the case that their
“stripped-down” model accurately reproduces the experimental data. This is the
acid test of any theory or simulation.

Figure 6 shows a comparison between experimental DFM images and the output
of Hapala et al.’s simulations for two systems comprising assemblies of
8-hydroxyquinoline tetramers and NTCDI molecules (as discussed above in the
context of Fig. 4), respectively. For both of these systems, intermolecular interac-
tions are mediated by hydrogen bonding. Note, however, how the sharp intra- and
intermolecular features in the simulated image of Fig. 6a agree extremely well with
those in the experimental data shown in Fig. 6b, despite the absence of any intra- or
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intermolecular charge density in the model. Figure 6c, d similarly shows a com-
parison between the “flexible tip” model and DFM images of a hydrogen-bonded
NTCDI assembly [4] taken by a number of the authors of this chapter. Again,
intramolecular and intermolecular features are observed in the simulated image,
despite the absence of any charge density due to covalent or hydrogen bonding.

It therefore would appear that the flexibility of the probe molecule plays a major
role in the imaging of intra- and intermolecular structure. But we have seen in
previous sections that there is also a close correspondence between images simu-
lated on the basis of an increase in electron kinetic energy due to Pauli exclusion
and the experimental frequency shift data [50]. Moreover, the intensity of intra-
molecular bonds as observed by DFM is related to the Pauling bond order [56], i.e.
the charge density. Similarly, the DFM images of de Oteyza et al. [2] clearly show a
pronounced difference between single, double and triple bonds. The key issue is
therefore the extent to which the response of the tip to interatomic and/or inter-
molecular charge density is a “first-order” versus “second-order” contribution to the
imaging mechanism, as compared to the flexibility of the probe. This is currently a
very active area of debate.

In order to explore the influence of tip relaxation on the DFM images of NTCDI
shown in Figs. 4 and 6, we (i.e. Sweetman et al. [4]) generated simulated images
using a variant of DFT where both the atomic geometry and the electronic structure
of the system were “frozen”. Despite the lack of probe relaxation, a weak feature at
the expected position of the hydrogen bond was observed. Nonetheless, another
question remains: to what extent might convolution of the tip’s electron density

Fig. 5 Schematic model of the tip–sample geometry used by Hapala et al. [5] in their analysis of
the origin of intra- and intermolecular contrast in DFM images. The final metal atom at the tip apex
and the “probe particle” are shaded in gold and cyan, respectively, with the underlying molecular
layer represented by the standard space-filling model. The coloured vectors show the various
forces on the tip: FTip;R (green) is the radial force; FTip;xy (red) is the lateral force; and FSurf

(yellow) is the force due to the sample molecules. (Ti and Tt refer to tunnelling processes not of
interest in this chapter.) Taken from Hapala et al. [5]
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with molecular charge density at the edge of a molecule account for the observation
of “intermolecular” features? In the supplementary information file associated with
their paper, Hapala et al. [5] suggest that this convolution effect could be as strong
as the interaction of the probe with any charge density due to an intermolecular
bond. This is an exceptionally important issue which needs to be addressed in a
timely fashion by the scanning probe microscopy community.

8 Conclusions

The history of the development of the PEP provides fascinating insights into just
how problematic it is to associate purely quantum mechanical concepts with clas-
sical “real-world” analogies. In this sense, it is a shame that Pauli’s Zweideutigkeit
term did not gain wider acceptance as it is a less misleading, albeit rather more

Fig. 6 a, b Comparison of a simulated DFM image of a hydrogen-bonded assembly of
8-hydroxyquinoline molecules (from Hapala et al. [5]) with the corresponding experimental DFM
image taken from Zhang et al. [3]. c Series of simulated frequency shift images at different
tip–sample separations, again from Hapala et al. [5], of NTCDI molecules using a (top row)
unrelaxed, and (bottom row) relaxed tip. d Experimental frequency shift image for comparison
(from Sweetman et al. [5])
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prosaic, description than “spin”. Similarly, when we describe the PEP as giving rise
to a repulsive force, we should bear in mind that the origin of the repulsion detected
in DFM is not at all adequately explained via classical analogies. The interaction
arises from the modification of the electrons’ momentum distribution due to the
increased curvature of the wave function imposed by the requirement for anti-
symmetrisation in fermion systems. Classical analogies will clearly fail.
Understanding the fundamental origin of the increased wave function curvature is
ultimate, as Feynman puts it in the quote at the start of this chapter, “deep down in
relativistic quantum mechanics”.

DFM provides us with direct access to the effects of Pauli exclusion on an atom-
by-atom and/or molecule-by-molecule basis, and with resolution comparable to the
spatial extent of a single chemical bond. This is a remarkable capability. At the time
of writing, it has been only five years since Gross et al. [1] pioneered the exploi-
tation of Pauli exclusion in force microscopy. As this variant of scanning probe
microscopy is therefore in its infancy, there is potentially immense scope for
detailed insights into the effects of the exclusion principle in a variety of atomic and
molecular systems. However, every probe microscope image—indeed, every image
(regardless of the technique used to generate that image)—is, at some level, a
convolution of the properties of the sample and those of the imaging system. In the
Pauli exclusion regime of dynamic force microscopy, this convolution can be
exceptionally strong. We therefore need to temper our enthusiasm for the acqui-
sition of ultra-high-resolution images with caution regarding the interpretation of
the data, as the examples included in this chapter clearly show.
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