680 research outputs found

    Lunar impact flashes from Geminids, analysis of luminous efficiencies and the flux of large meteoroids on Earth

    Get PDF
    We analyze lunar impact flashes recorded by our team during runs in December 2007, 2011, 2013 and 2014. In total, 12 impact flashes with magnitudes ranging between 7.1 and 9.3 in V band were identified. From these, 9 events could be linked to the Geminid stream. Using these observations the ratio of luminous energy emitted in the flashes with respect to the kinetic energy of the impactors for meteoroids of the Geminid stream is estimated. By making use of the known Geminids meteoroid flux on Earth we found this ratio to be 2.1x10−3^{-3} on average. We compare this luminous efficiency with other estimations derived in the past for other meteoroid streams and also compare it with other estimations that we present here for the first time by making use of crater diameter measurements. We think that the luminous efficiency has to be revised downward, not upward, at least for sporadic impacts. This implies an increase in the influx of kilogram-sized and larger bodies on Earth that has been derived thus far through the lunar impact flash monitoring technique

    Short-term variability of a sample of 29 trans-Neptunian objects and Centaurs

    Full text link
    We present results of 6 years of observations, reduced and analyzed with the same tools in a systematic way. We report completely new data for 15 objects, for 5 objects we present a new analysis of previously published results plus additional data and for 9 objects we present a new analysis of data already published. Lightcurves, possible rotation periods and photometric amplitudes are reported for all of them. The photometric variability is smaller than previously thought: the mean amplitude of our sample is 0.1mag and only around 15% of our sample has a larger variability than 0.15mag. The smaller variability than previously thought seems to be a bias of previous observations. We find a very weak trend of faster spinning objects towards smaller sizes, which appears to be consistent with the fact that the smaller objects are more collisionally evolved, but could also be a specific feature of the Centaurs, the smallest objects in our sample. We also find that the smaller the objects, the larger their amplitude, which is also consistent with the idea that small objects are more collisionally evolved and thus more deformed. Average rotation rates from our work are 7.5h for the whole sample, 7.6h for the TNOs alone and 7.3h for the Centaurs. All of them appear to be somewhat faster than what one can derive from a compilation of the scientific literature and our own results. Maxwellian fits to the rotation rate distribution give mean values of 7.5h (for the whole sample) and 7.3h (for the TNOs only). Assuming hydrostatic equilibrium we can determine densities from our sample under the additional assumption that the lightcurves are dominated by shape effects, which is likely not realistic. The resulting average density is 0.92g/cm^3 which is not far from the density constraint that one can derive from the apparent spin barrier that we observe.Comment: Accepted for publication in A&

    Possible ring material around centaur (2060) Chiron

    Get PDF
    We propose that several short duration events observed in past stellar occultations by Chiron were produced by rings material. From a reanalysis of the stellar occultation data in the literature we determined two possible orientations of the pole of Chiron's rings, with ecliptic coordinates l=(352+/-10) deg, b=(37+/-10) deg or l=(144+/-10) deg, b=(24+/-10) deg . The mean radius of the rings is (324 +/- 10) km. One can use the rotational lightcurve amplitude of Chiron at different epochs to distinguish between the two solutions for the pole. Both imply lower lightcurve amplitude in 2013 than in 1988, when the rotational lightcurve was first determined. We derived Chiron's rotational lightcurve in 2013 from observations at the 1.23-m CAHA telescope and indeed its amplitude is smaller than in 1988. We also present a rotational lightcurve in 2000 from images taken at CASLEO 2.15-m telescope that is consistent with our predictions. Out of the two poles the l=(144+/-10) deg, b=(24+/-10) deg solution provides a better match to a compilation of rotational lightcurve amplitudes from the literature and those presented here. We also show that using this preferred pole, Chiron's long term brightness variations are compatible with a simple model that incorporates the changing brightness of the rings as the tilt angle with respect to the Earth changes with time. Also, the variability of the water ice band in Chiron's spectra in the literature can be explained to a large degree by an icy ring system whose tilt angle changes with time and whose composition includes water ice, analogously to the case of Chariklo. We present several possible formation scenarios for the rings from qualitative points of view and speculate on the reasons why rings might be common in centaurs. We speculate on whether the known bimodal color distribution of centaurs could be due to presence of rings and lack of them

    Recent Progress in the RAUVI Project: A Reconfigurable Autonomous Underwater Vehicle for Intervention

    Get PDF
    Starting in January 2009, the RAUVI project is a three years coordinated research action funded by the Spanish Ministry of Research and Innovation. This paper shows the research evolution during the first half of RAUVI’s live, bearing in mind that the long term objective is to design and develop an underwater autonomous robot able to perceive the environment and, by means of a specific hand-arm system, perform autonomously simple intervention tasks in shallow waters.This research was partly supported by the European Commission’s Seventh Framework Programme FP7/2007- 2013 under grant agreement 248497 (TRIDENT Project), by Spanish Ministry of Research and Innovation DPI2008-06548- C03 (RAUVI Project), and by Fundació Caixa Castelló- Bancaixa P1-1B2009-50

    Transneptunian objects and Centaurs from light curves

    Full text link
    We analyze a vast light curve database by obtaining mean rotational properties of the entire sample, determining the spin frequency distribution and comparing those data with a simple model based on hydrostatic equilibrium. For the rotation periods, the mean value obtained is 6.95 h for the whole sample, 6.88 h for the Trans-neptunian objects (TNOs) alone and 6.75 h for the Centaurs. From Maxwellian fits to the rotational frequencies distribution the mean rotation rates are 7.35 h for the entire sample, 7.71 h for the TNOs alone and 8.95 h for the Centaurs. These results are obtained by taking into account the criteria of considering a single-peak light curve for objects with amplitudes lower than 0.15 mag and a double-peak light curve for objects with variability >0.15mag. The best Maxwellian fits were obtained with the threshold between 0.10 and 0.15mag. The mean light-curve amplitude for the entire sample is 0.26 mag, 0.25mag for TNOs only, and 0.26mag for the Centaurs. The amplitude versus Hv correlation clearly indicates that the smaller (and collisionally evolved) objects are more elongated than the bigger ones. From the model results, it appears that hydrostatic equilibrium can explain the statistical results of almost the entire sample, which means hydrostatic equilibrium is probably reached by almost all TNOs in the H range [-1,7]. This implies that for plausible albedos of 0.04 to 0.20, objects with diameters from 300km to even 100km would likely be in equilibrium. Thus, the great majority of objects would qualify as being dwarf planets because they would meet the hydrostatic equilibrium condition. The best model density corresponds to 1100 kg/m3.Comment: 21 pages, 8 figures. Astronomy & Astrophysics, in pres

    Visible and near-infrared observations of asteroid 2012 DA14 during its closest approach of February 15, 2013

    Full text link
    Near-Earth asteroid 2012 DA14 made its closest approach on February 15, 2013, when it passed at a distance of 27,700 km from the Earth's surface. It was the first time an asteroid of moderate size was predicted to approach that close to the Earth, becoming bright enough to permit a detailed study from ground-based telescopes. Asteroid 2012 DA14 was poorly characterized before its closest approach. We acquired data using several telescopes on four Spanish observatories: the 10.4m Gran Telescopio Canarias (GTC) and the 3.6m Telescopio Nazionale Galileo (TNG), both in the El Roque de los Muchachos Observatory (ORM, La Palma); the 2.2m CAHA telescope, in the Calar Alto Observatory (Almeria); the f/3 0.77m telescope in the La Hita Observatory (Toledo); and the f/8 1.5m telescope in the Sierra Nevada Observatory (OSN, Granada). We obtained visible and near-infrared color photometry, visible spectra and time-series photometry. Visible spectra together with color photometry of 2012 DA14 show that it can be classified as an L-type asteroid, a rare spectral type with a composition similar to that of carbonaceous chondrites. The time-series photometry provides a rotational period of 8.95 +- 0.08 hours after the closest approach, and there are indications that the object suffered a spin-up during this event. The large amplitude of the light curve suggests that the object is very elongated and irregular, with an equivalent diameter of around 18m. We obtain an absolute magnitude of H_R = 24.5 +- 0.2, corresponding to H_V = 25.0 +- 0.2. The GTC photometry also gives H_V = 25.29 +- 0.14. Both values agree with the value listed at the Minor Planet Center shortly after discovery. From the absolute photometry, together with some constraints on size and shape, we compute a geometric albedo of p_V = 0.44 +- 0.20, which is slightly above the range of albedos known for L-type asteroids (0.082 - 0.405).Comment: 7 pages, 4 figures, 1 table. Accepted in A&A (June 17 2013

    Pressure-Induced Phase-Transition Sequence In Cof 2 : An Experimental And First-Principles Study On The Crystal, Vibrational, And Electronic Properties

    Get PDF
    We report a complete structural study of CoF2 under pressure. Its crystal structure and vibrational and electronic properties have been studied both theoretically and experimentally using first-principles density functional theory (DFT) methods, x-ray diffraction, x-ray absorption at Co K-edge experiments, Raman spectroscopy, and optical absorption in the 0–80 GPa range. We have determined the structural phase-transition sequence in CoF2 and corresponding transition pressures. The results are similar to other transition-metal difluorides such as FeF2 but different to ZnF2 and MgF2, despite that the Co2+ size (ionic radius) is similar to Zn2+ and Mg2+. We found that the complete phase-transition sequence is tetragonal rutile (P42/mnm) → CaCl2 type (orthorhombic Pnnm) → distorted PdF2 (orthorhombic Pbca)+PdF2 (cubic Pa3¯) in coexistence → fluorite (cubic Fm3¯m) → cotunnite (orthorhombic Pnma). It was observed that the structural phase transition to the fluorite at 15 GPa involves a drastic change of coordination from sixfold octahedral to eightfold cubic with important modifications in the vibrational and electronic properties. We show that the stabilization of this high-pressure cubic phase is possible under nonhydrostatic conditions since ideal hydrostaticity would stabilize the distorted-fluorite structure (tetragonal I4/mmm) instead. Although the first rutile → CaCl2-type second-order phase transition is subtle by Raman spectroscopy, it was possible to define it through the broadening of the Eg Raman mode which is split in the CaCl2-type phase. First-principles DFT calculations are in fair agreement with the experimental Raman mode frequencies, thus providing an accurate description for all vibrational modes and elastic properties of CoF2 as a function of pressure

    Excitation energies, photoionization cross sections, and asymmetry parameters of the methyl and silyl radicals

    Get PDF
    Producción CientíficaVertical excitation energies of the methyl and silyl radicals were inferred from ab initio electron propagator calculations on the electron affinities of CH3 + and SiH3 +. Photoionization cross sections and angular distribution of photoelectrons for the outermost orbitals of both CH3 and SiH3 radicals have been obtained with the Molecular Quantum Defect Orbital method. The individual ionization cross sections corresponding to the Rydberg channels to which the excitation of the ground state’s outermost electron gives rise are reported. Despite the relevance of methyl radical in atmospheric chemistry and combustion processes, only data for the photon energy range of 10–11 eV seem to be available. Good agreement has been found with experiment for photoionization cross section of this radical. To our knowledge, predictions of the above mentioned photoionization parameters on silyl radical are made here for the first time, and we are not aware of any reported experimental measurements. An analysis of our results reveals the presence of a Cooper minimum in the photoionization of the silyl radical. The adequacy of the two theoretical procedures employed in the present work is discussed.Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA330U13

    CaH Rydberg Series, Oscillator Strengths and Photoionization Cross Sections from Molecular Quantum Defect and Dyson Orbital Theories

    Get PDF
    Producción CientíficaIn this work, electron-propagator methods are applied to the calculation of the ionization potential and vertical excitation energies for several Rydberg series of the CaH molecule. The present calculations cover more highly excited states than those previously reported. In particular, excitation energies for ns (n>5), np (n>5), nd (n>4) and nf Rydberg states are given. Oscillator strengths for electronic transitions involving Rydberg states of CaH, as well as photoionization cross sections for Rydberg channels, also have been determined by using the Molecular Quantum Defect Orbital approach. Good agreement has been found with the scarce comparative data that are available for oscillator strengths. To our knowledge, predictions of photoionization cross sections from the outermost orbital of CaH are made here for the first time. A Cooper minimum and mixed atomic orbital character in some of the Dyson orbitals are among the novel features of these present calculationsJunta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA330U13
    • …
    corecore