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Abstract 

In this work, electron-propagator methods are applied to the calculation of the ionization 

potential and vertical excitation energies for several Rydberg series of the CaH molecule. 

The present calculations cover more highly excited states than those previously reported. 

In particular, excitation energies for ns (n>5), np (n>5), nd (n>4) and nf Rydberg states 

are given. Oscillator strengths for electronic transitions involving Rydberg states of CaH, 

as well as photoionization cross sections for Rydberg channels, also have been 

determined by using the Molecular Quantum Defect Orbital approach. Good agreement 

has been found with the scarce comparative data that are available for oscillator strengths.  

To our knowledge, predictions of photoionization cross sections from the outermost 

orbital of CaH are made here for the first time. A Cooper minimum and mixed atomic 

orbital character in some of the Dyson orbitals are among the novel features of these 

present calculations.  
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Introduction 

Calcium monohydride has been a molecule of considerable interest to 

spectroscopists, theoreticians and astrophysicists since it was first identified in the spectra 

of sunspots [1,2] and M dwarf stars [3]. Ever since, several bands of CaH have been 

detected in cool brown dwarfs, where high abundances of this molecule have been 

recorded [4,5,6]. More recently, the chemical abundance of CaH in Kapteyn’s Star [6] 

and in T dwarfs have been determined [7,8]. Moreover, CaH is thought to be a relevant 

repository of gas-phase metal atoms [9] because its spectrum is present in a variety of 

interstellar environments. Because molecular absorption is the most important opacity 

source in cool, stellar atmospheres [10], spectroscopic data on electronic, vibrational, and 

rotational transitions of CaH are of great importance. On the other hand, hundreds of 

extrasolar planets have been discovered in the last decades. The analysis of the 

composition and physical features of exoplanets, where CaH is thought likely to be 

relevant, requires copious spectroscopic data, most of which are difficult to obtain from 

laboratory experiments [11]. Theoretical methods that are both accurate and efficient for 

predicting spectral properties could make a valuable contribution to knowledge of the 

spectroscopy of the CaH molecule. 

The spectrum of CaH has been the subject of many experimental and theoretical 

studies since it was first photographed by Olmsted in emission [1]. A summary of 

spectroscopic and astrophysical studies of CaH has been provided by Shayesteh et al.  

[12] and more recently by Yadin et al. [13]. The compiled studies included those focused 

on the determination of spectroscopic properties, potential energy curves and dipole 

moments for the ground and some low-lying electronic states. However, in spite of 

numerous studies on the CaH spectrum, available data are limited to its low-lying states. 

Thus, it is the aim of the present work to supply new molecular data for calcium 
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monohydride directly associated with electronic transition properties involving Rydberg 

states. We have inferred vertical excitation energies of ns, np, nd and nf Rydberg series 

of CaH in the 1.8-5.5 eV energy range from differences of electron affinities of CaH+
 

calculated with electron-propagator methods. [14,15] Because this approach also yields 

Dyson orbitals that connect the ground state of CaH+ to ground and excited states of CaH, 

atomic contributions to the Rydberg orbitals may be identified.   

Studies on electronic transition intensities of CaH are limited to some low-lying 

states despite the need for more general data in developing reliable atmospheric models 

of cool stars and extrasolar giant planets [16]. Barbuy et al. [17] have derived oscillator 

strengths for the A2-X2 and B2-X2 systems from a comparison of their lines 

obtained with model atmospheres and the observed spectra. Otherwise, Bruna and Grein 

[18] have calculated oscillator strengths for several transitions of CaH using a single-

reference ab initio method. Their study is limited to transitions involving 5p, 4d and 5s 

Rydberg states. Hence, another goal of the present study is to provide intensities of 

electronic transitions from the ground state to higher excited states including the 

continuum. Considering the good performance of the Molecular Quantum Defect Orbital 

(MQDO) method, which is semi-empirical in character, in calculations of one-photon 

transition intensities involving Rydberg states and its reliability in previous applications 

[19,20], including another metal hydride (BeH) [21], we have used this approach to 

determine oscillator strengths and photoionization cross sections of the CaH molecule. 

The vertical excitation energies calculated with electron-propagator methods have been 

used as parameters in the MQDO method. In previous works [22,23], ab initio electron-

propagator energy data and the MQDO oscillator strengths calculated with them have 

proved to be consistent with the most accurate ab initio calculations. In this work, we 

have determined oscillator strengths for dipole-allowed transitions from the X2+ ground 
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state to np2+ and np2 Rydberg series. Our results have been compared with the scarce 

comparative data available in the bibliography. For the continuum region we have 

estimated the photoionization cross sections for the kp2+ and kp2 Rydberg ionization 

channels. A Cooper minimum, which is a useful phenomenon for analyzing photoelectron 

dynamics [24], is found in our calculated cross sections. Cooper minima also have been 

observed in previous applications of the MQDO method to molecular photoionization 

studies [25,26]. To our knowledge neither theoretical nor experimental continuum 

transition intensities of CaH have been reported. In order to assess the correctness of our 

results, we have determined the oscillator-strength spectral density in the discrete and 

continuum regions and have analyzed the continuity of this property near the ionization 

potential. 

Methods of calculation 

A.  Electron-propagator theory 

In electron-propagator calculations, electron-binding energies and Dyson orbitals are the 

eigenvalues and eigenfunctions of an energy-dependent, non-local, one-electron 

operator that incorporates the effects of orbital relaxation and electron correlation. 

[14,15] For the i-th electron affinity of a cationic ground state with N-1 electrons, the 

corresponding Dyson orbital reads 

 

Φi
Dyson(x1) = N½ ∫ Ψi,molecule(x1,x2,x3…,xN) Ψ*

cation(x2,x3,x4…,xN) dx2dx3dx4…dxN , (1)  

 

where xk is the space-spin coordinate of electron k. This ab initio approach may be 

systematically improved to the exact limit by incorporating more terms in the self-energy 

operator. In the present study, the self-energy operator is calculated in the 3+ 

approximation, a method that includes all third-order and many higher-order terms in the 
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self-energy operator through a renormalization procedure.  Pole strengths, i.e. the norms 

of the Dyson orbitals, approach unity when electron correlation effects vanish. For most 

of the present transitions, pole strengths exceed 0.95 and validate the qualitative picture 

of a Rydberg state consisting of a cationic core with a diffuse orbital that resembles a 

hydrogenic eigenfunction. Mulliken populations of Dyson orbitals normalized to unity 

suffice to identify cases where there is substantial mixing of atomic orbitals with different 

l quantum numbers. A cc-pvqz basis set [27,28] augmented by even-tempered 9s, 9p, 9d 

and 9f diffuse functions on Ca is employed.  Exponents of the latter functions are 

generated by successively applying a multiplicative factor of one third to the least diffuse 

s, p, d and f members of the Ca cc-pvqz set. The first five occupied molecular orbitals 

(i.e. those that are chiefly 1s, 2s or 2p Ca functions) are neglected in the calculation of the 

3+ self-energy. Therefore, CaH+ has five active occupied orbitals in the electron-

propagator calculations.  

Additional ab initio calculations in the coupled-cluster singles and doubles plus 

perturbative triples, or CCSD(T), approximation [29]  have been performed to procure 

the adiabatic ionization energy of CaH: 5.627 eV. The latter datum includes zero-point 

energies and is used in MQDO calculations. The bond length of CaH optimized with 

CCSD(T), 2.0034 Å, is assumed in the electron-propagator calculations of the electron 

affinities of CaH+. The first vertical electron affinity (i.e. that connecting the ground states 

of CaH+ and CaH) calculated in the 3+ approximation of electron-propagator theory is 

5.663 eV, with a pole strength of 0.968. (The CCSD(T) result is within 0.01 eV of the 

electron-propagator value.)  Differences of vertical electron affinities constitute vertical 

excitation energies of CaH. 

All ab initio calculations were performed with the development version of Gaussian. 

[30] 
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B. Molecular Quantum Defect Orbital method (MQDO) 

The MQDO methodology has been previously reported in several papers [31,32] and, 

therefore, the major points are presented briefly here. It is based on a model one-

electron Hamiltonian with a parametric potential of the form: 
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where  is a parameter, related to the quantum defect, , and the orbital angular moment, 

l, which determines the electron screening.   

In the MQDO method, the wave function is expressed as a product of a radial function 

and an angular function.  The radial part is the analytical solution of the Schrödinger 

equation and the angular part is a symmetry-adapted linear combination of spherical 

harmonics.  

The absorption oscillator strength for an electronic transition between two bound states 

adopts the following expression: 
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and the photoionization cross-section for a transition between a bound state and a 

continuous state adopts this form: 
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In both equations, Q{ab} are the angular factors resulting from the angular integration, 

N is the number of electrons in the orbital where the transition initiates and k2 is the kinetic 

energy of the free electron upon ionization in Rydberg units. Rab is the radial transition 
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moment which has a closed-form analytical expression. This fact offers, in our view, an 

important computational advantage compared to ab initio methods. 

 

Results and discussion 

A. Transition energies 

The X2+ ground-state electronic configuration at its equilibrium geometry can be written 

as [core](122), where the  highest occupied 2 orbital is chiefly an atomic Ca 4s orbital. 

The present calculated absorption spectrum of CaH corresponds to vertical excitations 

from the ground state to states belonging to the following Rydberg series: ns (2+), np 

(2+), np (2), nd (2+), nd (2), nd (2), nf (2+), nf (2), nf (2) and nfφ (2). 

The quantum number n of the Rydberg states has been determined through a careful 

analysis of the quantum defects associated with each of the Rydberg series of CaH. To 

do this, we have taken into account the fact that the values of the quantum defect for 

hydrides usually are of the same magnitude as those of the corresponding atom [33]. In 

particular, the quantum defects for the Ca atom are about 3, 2, and 1 for the s, p and d 

series, respectively [34].  

The presently calculated vertical excitation energies are collected in Table 1. It should be 

noted that the s, p, d and f denotations of the Rydberg states may be an over-simplification 

when mixing is present (see Q column in Table 1). For comparative purposes, in Table 2, 

our results for Rydberg states are displayed together with experimental values found in 

the literature [35,36,37]. As can be seen, a good agreement (to within ~0.15 eV) is found 

in most of the assignments and energy values. However, for the B2+ state observed at 

1.954 eV which was experimentally assigned to a 2→4p excitation, our calculations 

indicate the final state has a mixed singly-occupied orbital instead. (A Mulliken 

population analysis of the Dyson orbital shows 59% d and 34% p character.) The 2Δ state 
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at 2.461 eV may be assigned to a 2σ→3dδ transition that resembles results on a 12Δ state 

identified computationally by Bruna and Grein (2.86 eV) [18] and by Leininger and Jeung 

(2.38 eV) [38] with configuration interaction. From our calculations, the E2 and C2+ 

experimentally observed states correspond to 3d and 5s Rydberg states, respectively. 

We also have tentatively assigned the F2+ state observed at 4.55 eV [39] to a 2→6s 

Rydberg excitation.  

In most cases, the pole strengths are close to unity and the Dyson orbitals are dominated 

by a contribution from a single, canonical, Hartree-Fock orbital. The molecular orbital 

picture of the Rydberg states remains qualitatively valid when the correlation effects 

inherent in 3+ electron-propagator calculations are considered. There are several states 

where the Dyson orbital exhibits considerable mixing of Ca s, p, d or f functions, but most 

cases have a single, dominant l component. Correlation and relaxation corrections to 

canonical Hartree-Fock orbital energies obtained in 3+ calculations decline in importance 

with increasing excitation energy for the cases where the pole strength is close to unity.  

 For low values of n, the quantum defects shown in Fig. 1 (see footnote e in Table 

1) are approximately constant for a given Rydberg series and confirm the adequacy of the 

Gaussian basis.   The sensitivity of the quantum defects to the energy values results in the 

anomalous behavior seen for higher n. For example, in the s series, a variation of ±0.05 

eV in the 5s Rydberg state at 5.31 eV produces a change of ±0.03 in δ, whereas for the 

12 s state at 5.61 eV, the same variation changes δ from -18.12 to -2.47. Addition of more 

diffuse Gaussian functions can be expected to provide better exponential tails in the 

Dyson orbitals and improved quantum defects for the higher Rydberg states.  

 

B. Oscillator strengths and photoionization cross sections 
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The oscillator strengths for dipole-allowed transitions originating in the 2 orbital of 

the ground state and ending in the np and npπ Rydberg states of CaH have been obtained 

with MQDO methodology. In these calculations, we have used the presently determined 

adiabatic ionization potential and vertical excitation energies. The present absorption 

oscillator strengths are collected in Table 3. Comparative data reported by Bruna and 

Grein [18] and by Barbuy et al.[17] also have been included. Bruna and Grein [18] carried 

out ab initio calculations using multi-reference configuration interaction (MRDCI) 

wavefunctions.  Barbuy et al. [17] have derived oscillator strengths from the spectra of 

cool dwarfs computed using model atmospheres. As can be seen in Table 3, there is a 

reasonable agreement between the MQDO f-values and the comparative ones for the 

X2+-4pπ(A2) and X2+-5p(K2+) transitions. We note that our f-value for the X2+-

5pπ(L2) transition is a factor of 10 lower than the value indicated by Bruna and Grein 

[18]. No comparative values on intensities corresponding to transitions to Rydberg states 

with n>5 seem to be available to date.  

In this work, we also have calculated photoionization cross sections for the kp 

and kpπ dipole-allowed Rydberg channels arising from the excitation of the 2 orbital of 

the ground state of CaH. The electronic partial cross sections for the photoionization of 

CaH from the outermost orbital have been determined by adding the cross sections 

corresponding to each of the single ionization channels, i.e. the 2-kp and 2-kpπ 

excitations. For the kp and kpπ Rydberg channels, we have adopted a quantum defect 

value of 2.0. In Figure 2, the MQDO cross sections are plotted versus the photon energy 

up to an energy of 70 eV. According our calculations, the 2 molecular orbital of CaH is 

basically a Ca 4s orbital.  Given that the radial wave function of such an orbital has nodes, 

a change in sign of the radial dipole matrix element for both studied Rydberg channels is 
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found and, thus, a minimum is expected in the photoionization cross section profile. An 

inspection of Figure 2 reveals the presence of a Cooper minimum for each of the Rydberg 

channels at a photon energy of 6.2 eV for kp and 6.6 eV for kpπ. Thus, a minimum 

also is present in the electronic partial photoionization cross section at a photon energy 

of 6.5 eV.  

No comparative data appear to be available in the literature either for the electronic 

partial photoionization cross sections or for the two Rydberg ionization channels to test 

the accuracy of the present calculations. Given this lack of comparative data, we have 

evaluated the oscillator strength spectral density (df/dE) in the complete spectral region 

assuming that continuity through the threshold is expected for a given spectral series 

between the discrete and continuum region. In the discrete part of the spectrum, the 

oscillator strengths are represented in form of a histogram following the procedure 

developed by Fano and Cooper [40]. In the continuum region, the oscillator strength 

spectral density is derived from the calculated MQDO cross section through the following 

expression: 

  

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


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.E eVcm100981 216  

In Figures 3 and 4 we display the MQDO oscillator strength spectral density for both the 

continuum and discrete regions of spectrum corresponding to excitations from the 2 

orbital to np and npπ  with n=5-9 and the continuum. As can be seen in both Figures, 

continuity between spectral densities in the continuum and discrete region at the 

ionization potential is observed.  

 

Conclusions 
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In the present work, vertical excitation energies for Rydberg states of CaH have been 

determined with electron-propagator methods. A large number of excited Rydberg states 

have been investigated and the results are consistent with the scarce experimental data. 

To the best of our knowledge, some of the highest-energy states we have calculated have 

never been the object of experimental or theoretical work. For the first time, Rydberg 

states of f character have been considered. Oscillator strengths and photoionization cross 

sections of CaH also have been calculated by using the MQDO approach. A Cooper 

minimum has been found for photoionization from the outermost electron of the ground 

state. Given the lack of comparative data, we take the continuity of the differential 

oscillator strength across the ionization threshold as an assessment of the adequacy of the 

MQDO approach for the calculation of spectral intensities. We expect that the data 

supplied by the present work will help in future analysis and interpretation of the 

electronic spectrum of CaH. 
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Table 1. Vertical excitation energies (eV) of CaH 

 

   

MOa Δ3+
b Pc IRd Qe   MOa Δ3+

b Pc IRd Qe
 

6 0.000 0.97 σ 4s            52 5.173 1.00 σ 0.48df 

7 1.792 0.97 π 4p  53 5.176 1.00 π 0.57d, 0.31p 

9 2.017 0.96 σ 0.59d, 0.34p 55 5.239 1.00 σ 8s 

10 2.461 0.95 δ 3d  56 5.185 1.00 φ f 

12 2.696 0.93 π d  58 5.293 0.99 π 8p 

14 3.510 0.99 σ 5s  60 5.191 1.00 δ f 

15 4.057 0.99 π 5p  62 5.293 1.00 σ 0.53p, 35f 

17 4.066 0.98 σ 0.54p, 0.34d 63 5.202 0.97 π f 

18 4.250 0.99 δ 4d  65 5.203 1.00 σ 0.57f, 0.30p 

20 4.353 0.98 σ 0.53d, 0.24p 66 5.351 1.00 δ 7d 

21 4.375 0.99 π d  68 5.353 1.00 σ d 

23 4.561 1.00 σ 6s  69 5.355 1.00 π d 

24 4.783 1.00 φ f  71 5.401 1.00 σ 9s 

26 4.781 0.99 π 6p  72 5.425 0.98 π 9p 

28 4.826 1.00 δ f  74 5.426 1.00 σ p 

30 4.776 0.99 σ 0.53p, 0.29d 75 5.469 1.00 σ d 

31 4.853 1.00 π f  76 5.470 1.00 δ 8d 

33 4.860 1.00 σ f  78 5.483 0.48 π d  

34 4.863 1.00 δ 5d  78 5.468 0.82 π d 

36 4.911 0.99 σ 0.42df     80 5.507 1.00 σ 10s 

37 4.919 1.00 π 0.52d, 0.34p 81 5.522 0.99 π 10p 

39 4.998 1.00 σ 7s  83 5.522 1.00 σ p 

40 5.103 1.00 φ f  84 5.520 1.00 σ d 

42 5.109 0.98 π 7p  85 5.521 1.00 δ 9d 

44 5.124 1.00 δ f  87 5.520 0.98 π d 

46 5.104 1.00 σ 0.51p, 0.24f 89 5.572 1.00 σ 11s 

47 5.266 0.09 π f  90 5.582 1.00 π 11p 

47 5.137 0.97 π f  92 5.582 1.00 σ p 

49 5.145 1.00 σ 0.48f, 0.45d 93 5.504 0.99 σ 0.59d, 0.39f 

50 5.162 1.00 δ 6d  94 5.612 1.00 σ 12s 

________________________________________________________________ 
a Dominant canonical Hartree-Fock orbital component in Dyson orbital. Five occupied 

molecular orbitals (1σ + Ca 3s, 3px, 3py and 3pz) are included in the 3+ calculations of 

the electron affinities of CaH+. Molecular orbital 6 = 2σ.  
b Excitation energy = difference between electron affinities in 3+ electron-propagator 

calculations 
c Pole strength (norm of Dyson orbital for electron affinity) 
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d Irreducible representation 
e Dyson orbitals’ dominant (> 0.6) Ca atomic character or s, p, d and f Mulliken charges 

for mixed cases; n quantum numbers are given for nsσ, npπ and ndδ Rydberg series.  
f For MO=36: 0.42d, 0.28p, 0.27f. For MO=52: 0.48d, 0.24p, 0.24f 
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Table 2. Vertical excitation energies (eV) of CaH 

 

 This work   Expt.a  

 E   Te 

     

4pπ(2) 1.792  A2 (4p) 1.786   

3dσ(2+)* 2.017  B2+ (4p) 1.954 

3dπ(2) 2.696  E2  2.528 

5sσ(2+) 3.510  C2+  3.51 

5pπ(2) 4.057  L2 (5p) 4.052 

5pσ(2+)* 4.066  K2+ (5p) 4.05 

4dδ(2) 4.250  M2 (4d) 4.40 

4dσ(2+)* 4.353  G2+ (4d) 4.31 

4dπ(2) 4.375  J2 (4d) 4.35 

6sσ(2+) 4.561  F2+ 4.55 
     

aSee [35] and [36] (A and B states) , [37] (E state) 

 *mixed orbital 
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Table 3. Oscillator strengths for transitions from the ground state to np and np Rydberg 

series of CaH  

Transition MQDOa Comparative 

   

X2+ - 4pπ(2) 0.3666 0.39b, 0.55c 

X2+ - 5pπ(2) 0.00074 0.03b 

X2+ - 6pπ(2) 0.00065  

X2+ - 7pπ(2) 0.00018  

X2+ - 8pπ(2) 0.00007  

X2+ - 9pπ(2) 0.00003  

   

X2+ - 5p(2+) 0.00055 0.0003b 

X2+ - 6p(2+) 0.00022  

X2+ - 7p(2+) 0.00005  

X2+ - 8p(2+) 0.00002  

X2+ - 9p(2+) 0.00001  
   

a This work 
b Bruna and Grein 
c Barbuy et al. 
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Figure 1. Calculated quantum defects (δ) versus principal quantum number (n) for nsσ, 

npπ and ndδ Rydberg series.  
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Figure 2. MQDO partial and individual cross sections profiles for the Rydberg channels 

that arise from the 2 molecular orbital of CaH in its ground state.  

 

  
Figure 3. MQDO oscillator strength spectral density for bound and continuum 

spectral regions of the X2+ - np(2+) (n=5-9, continuum) Rydberg series of 

CaH as a function of photon energy. 
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Figure 4. MQDO oscillator strength spectral density for bound and continuum spectral 

regions of the X2+ - npπ(2) (n=5-9, continuum) Rydberg series of CaH as a function 

of photon energy. 


