7,817 research outputs found

    Directed network of substorms using SuperMAG ground‐based magnetometer data

    Get PDF
    We quantify the spatio‐temporal evolution of the substorm ionospheric current system utilizing the SuperMAG 100+ magnetometers. We construct dynamical directed networks from this data for the first time. If the canonical cross‐correlation (CCC) between vector magnetic field perturbations observed at two magnetometer stations exceeds a threshold, they form a network connection. The time lag at which CCC is maximal determines the direction of propagation or expansion of the structure captured by the network connection. If spatial correlation reflects ionospheric current patterns, network properties can test different models for the evolving substorm current system. We select 86 isolated substorms based on nightside ground station coverage. We find, and obtain the timings for, a consistent picture in which the classic substorm current wedge (SCW) forms. A current system is seen pre‐midnight following the SCW westward expansion. Later, there is a weaker signal of eastward expansion. Finally, there is evidence of substorm‐enhanced convection

    Estimating the duration of speciation from phylogenies

    Get PDF
    Speciation is not instantaneous but takes time. The protracted birth-death diversification model incorporates this fact and predicts the often observed slowdown of lineage accumulation toward the present. The mathematical complexity of the protracted speciation model has barred estimation of its parameters until recently a method to compute the likelihood of phylogenetic branching times under this model was outlined (Lambert et al. ). Here, we implement this method and study using simulated phylogenies of extant species how well we can estimate the model parameters (rate of initiation of speciation, rate of extinction of incipient and good species, and rate of completion of speciation) as well as the duration of speciation, which is a combination of the aforementioned parameters. We illustrate our approach by applying it to a primate phylogeny. The simulations show that phylogenies often do not contain enough information to provide unbiased estimates of the speciation-initiation rate and the extinction rate, but the duration of speciation can be estimated without much bias. The estimate of the duration of speciation for the primate clade is consistent with literature estimates. We conclude that phylogenies combined with the protracted speciation model provide a promising way to estimate the duration of speciation.</p

    Periodic magnetorotational dynamo action as a prototype of nonlinear magnetic field generation in shear flows

    Get PDF
    The nature of dynamo action in shear flows prone to magnetohydrodynamic instabilities is investigated using the magnetorotational dynamo in Keplerian shear flow as a prototype problem. Using direct numerical simulations and Newton's method, we compute an exact time-periodic magnetorotational dynamo solution to the three-dimensional dissipative incompressible magnetohydrodynamic equations with rotation and shear. We discuss the physical mechanism behind the cycle and show that it results from a combination of linear and nonlinear interactions between a large-scale axisymmetric toroidal magnetic field and non-axisymmetric perturbations amplified by the magnetorotational instability. We demonstrate that this large scale dynamo mechanism is overall intrinsically nonlinear and not reducible to the standard mean-field dynamo formalism. Our results therefore provide clear evidence for a generic nonlinear generation mechanism of time-dependent coherent large-scale magnetic fields in shear flows and call for new theoretical dynamo models. These findings may offer important clues to understand the transitional and statistical properties of subcritical magnetorotational turbulence.Comment: 10 pages, 6 figures, accepted for publication in Physical Review

    Linear stability, transient energy growth and the role of viscosity stratification in compressible plane Couette flow

    Full text link
    Linear stability and the non-modal transient energy growth in compressible plane Couette flow are investigated for two prototype mean flows: (a) the {\it uniform shear} flow with constant viscosity, and (b) the {\it non-uniform shear} flow with {\it stratified} viscosity. Both mean flows are linearly unstable for a range of supersonic Mach numbers (MM). For a given MM, the critical Reynolds number (ReRe) is significantly smaller for the uniform shear flow than its non-uniform shear counterpart. An analysis of perturbation energy reveals that the instability is primarily caused by an excess transfer of energy from mean-flow to perturbations. It is shown that the energy-transfer from mean-flow occurs close to the moving top-wall for ``mode I'' instability, whereas it occurs in the bulk of the flow domain for ``mode II''. For the non-modal analysis, it is shown that the maximum amplification of perturbation energy, GmaxG_{\max}, is significantly larger for the uniform shear case compared to its non-uniform counterpart. For α=0\alpha=0, the linear stability operator can be partitioned into LLˉ+Re2Lp{\cal L}\sim \bar{\cal L} + Re^2{\cal L}_p, and the ReRe-dependent operator Lp{\cal L}_p is shown to have a negligibly small contribution to perturbation energy which is responsible for the validity of the well-known quadratic-scaling law in uniform shear flow: G(t/Re)Re2G(t/{\it Re}) \sim {\it Re}^2. A reduced inviscid model has been shown to capture all salient features of transient energy growth of full viscous problem. For both modal and non-modal instability, it is shown that the {\it viscosity-stratification} of the underlying mean flow would lead to a delayed transition in compressible Couette flow

    The Molonglo Reference Catalog 1-Jy radio source survey IV. Optical spectroscopy of a complete quasar sample

    Get PDF
    Optical spectroscopic data are presented here for quasars from the Molonglo Quasar Sample (MQS), which forms part of a complete survey of 1-Jy radio sources from the Molonglo Reference Catalogue. The combination of low-frequency selection and complete identifications means that the MQS is relatively free from the orientation biases which affect most other quasar samples. To date, the sample includes 105 quasars and 6 BL Lac objects, 106 of which have now been confirmed spectroscopically. This paper presents a homogenous set of low-resolution optical spectra for 79 MQS quasars, the majority of which have been obtained at the Anglo-Australian Telescope. Full observational details are given and redshifts, continuum and emission-line data tabulated for all confirmed quasars.Comment: 40 pages, ApJS in pres

    Trends in Self-Harm in Kuala Lumpur, 2005-2011.

    Get PDF
    Acts of self-harm are not routinely tracked in Malaysia. The present study investigates the prevalence of self-harm in Kuala Lumpur, Malaysia, over a 7-year period. The aims were to: (a) assess the prevalence of self-harm; (b) examine any changes over a period of 7 years, and (c) identify correlates of methods of self-harm. Data were extracted from the hospital records of Kuala Lumpur Hospital to review trends in self-harm between 2005 and 2011. There were 918 episodes of self-harm across the 7-year period, with a significant peak in 2007-2009. The average rate of self-harm (7.7 per 100,000 population per year) was similar or lower than the rate of suicide (6-8 or 8-13 per 100,000) suggesting that genuine cases of self-harm are often attributed to other causes. Nevertheless, over-representation of young people, women and Indians suggest areas in which resources to prevent self-harm might usefully be targeted. Estimating rates of self-harm are fraught with problems and further research is needed to understand the economic and cultural barriers around seeking treatment for self-harm, reporting self-harm and classifying self-harm

    Fast outflows in compact radio sources: evidence for AGN-induced feedback in the early stages of radio source evolution

    Get PDF
    We present intermediate resolution, wide wavelength coverage spectra for a complete sample of 14 compact radio sources taken with the aim of investigating the impact of the nuclear activity on the circumnuclear (ISM) in the early stages of radio source evolution. We observe spatially extended line emission (up to 20 kpc) in the majority of sources which is consistent with a quiescent halo. In the nuclear apertures we observe broad, highly complex emission line profiles. Multiple Gaussian modelling of the [O III]5007 line reveals 2-4 components which can have FWHM and blueshifts relative to the halo of up to 2000 km/s. We interpret these broad, blueshifted components as material in outflow and discuss the kinematical evidence for jet-driven outflows. Comparisons with samples in the literature show that compact radio sources harbour more extreme nuclear kinematics than their extended counterparts, a trend seen within our sample with larger velocities in the smaller sources. The observed velocities are also likely to be influenced by source orientation with respect to the observer's line of sight. Nine sources have associated HI absorption. In common with the optical emission line gas, the HI profiles are often highly complex with the majority of the detected components significantly blueshifted, tracing outflows in the neutral gas. The sample has been tested for stratification in the ISM (FWHM/ionisation potential/critical density) as suggested by Holt et al. (2003) for PKS1345+12 but we find no significant trends within the sample using a Spearman Rank analysis. This study supports the idea that compact radio sources are young radio loud AGN observed during the early stages of their evolution and currently shedding their natal cocoons through extreme circumnuclear outflows.Comment: Accepted for publication in MNRAS, 24 pages, 7 figure

    Hybridization and rapid differentiation after secondary contact between the native green anole (\u3cem\u3eAnolis carolinensis\u3c/em\u3e) and the introduced green anole (\u3cem\u3eAnolis porcatus\u3c/em\u3e)

    Get PDF
    In allopatric species, reproductive isolation evolves through the accumulation of genetic incompatibilities. The degree of divergence required for complete reproductive isolation is highly variable across taxa, which makes the outcome of secondary contact between allopatric species unpredictable. Since before the Pliocene, two species of Anolis lizards, Anolis carolinensis and Anolis porcatus, have been allopatric, yet this period of independent evolution has not led to substantial species‐specific morphological differentiation, and therefore, they might not be reproductively isolated. In this study, we determined the genetic consequences of localized, secondary contact between the native green anole, A. carolinensis, and the introduced Cuban green anole, A. porcatus, in South Miami. Using 18 microsatellite markers, we found that the South Miami population formed a genetic cluster distinct from both parental species. Mitochondrial DNA revealed maternal A. porcatus ancestry for 35% of the individuals sampled from this population, indicating a high degree of cytonuclear discordance. Thus, hybridization with A. porcatus, not just population structure within A. carolinensis, may be responsible for the genetic distinctiveness of this population. Using tree‐based maximum‐likelihood analysis, we found support for a more recent, secondary introduction of A. porcatus to Florida. Evidence that ~33% of the nuclear DNA resulted from a secondary introduction supports the hybrid origin of the green anole population in South Miami. We used multiple lines of evidence and multiple genetic markers to reconstruct otherwise cryptic patterns of species introduction and hybridization. Genetic evidence for a lack of reproductive isolation, as well as morphological similarities between the two species, supports revising the taxonomy of A. carolinensis to include A. porcatus from western Cuba. Future studies should target the current geographic extent of introgression originating from the past injection of genetic material from Cuban green anoles and determine the consequences for the evolutionary trajectory of green anole populations in southern Florida

    Spectropolarimetry of 3CR 68.1: A Highly Inclined Quasar

    Get PDF
    We present Keck spectropolarimetry of the highly polarized radio-loud quasar 3CR 68.1 (z=1.228, V=19). The polarization increases from 5 in the red (4000 A rest-frame) to >10% in the blue (1900 A rest-frame). The broad emission lines are polarized the same as the continuum, which shows that 3CR 68.1 is not a blazar as it has sometimes been regarded in the past. We also present measurements of the emission lines and a strong, blueshifted, associated absorption line system, as well as a detection at the emission-line redshift of Ca II K absorption, presumably from stars in the host galaxy. 3CR 68.1 belongs to an observationally rare class of highly polarized quasars that are neither blazars nor partially obscured radio-quiet QSOs. Taking into account 3CR 68.1's other unusual properties, such as its extremely red spectral energy distribution and its extreme lobe dominance, we explain our spectropolarimetric results in terms of unified models. We argue that we have a dusty, highly inclined view of 3CR 68.1, with reddened scattered (polarized) quasar light diluted by even more dust-reddened quasar light reaching us directly from the nucleus.Comment: 20 pages, includes 3 tables, 6 figures. Accepted by Ap

    Direct mass measurements of 19B, 22C, 29F, 31Ne, 34Na and other light exotic nuclei

    Full text link
    We report on direct time-of-flight based mass measurements of 16 light neutron-rich nuclei. These include the first determination of the masses of the Borromean drip-line nuclei 19^{19}B, 22^{22}C and 29^{29}F as well as that of 34^{34}Na. In addition, the most precise determinations to date for 23^{23}N and 31^{31}Ne are reported. Coupled with recent interaction cross-section measurements, the present results support the occurrence of a two-neutron halo in 22^{22}C, with a dominant ν2s1/22\nu2s_{1/2}^2 configuration, and a single-neutron halo in 31^{31}Ne with the valence neutron occupying predominantly the 2p3/2p_{3/2} orbital. Despite a very low two-neutron separation energy the development of a halo in 19^{19}B is hindered by the 1d5/22d_{5/2}^2 character of the valence neutrons.Comment: 5 page
    corecore