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Speciation is not instantaneous but takes time. The protracted birth–death diversification model incorporates this fact and predicts

the often observed slowdown of lineage accumulation toward the present. The mathematical complexity of the protracted

speciation model has barred estimation of its parameters until recently a method to compute the likelihood of phylogenetic

branching times under this model was outlined (Lambert et al. 2014). Here, we implement this method and study using simulated

phylogenies of extant species how well we can estimate the model parameters (rate of initiation of speciation, rate of extinction

of incipient and good species, and rate of completion of speciation) as well as the duration of speciation, which is a combination

of the aforementioned parameters. We illustrate our approach by applying it to a primate phylogeny. The simulations show that

phylogenies often do not contain enough information to provide unbiased estimates of the speciation-initiation rate and the

extinction rate, but the duration of speciation can be estimated without much bias. The estimate of the duration of speciation for

the primate clade is consistent with literature estimates. We conclude that phylogenies combined with the protracted speciation

model provide a promising way to estimate the duration of speciation.

KEY WORDS: Birth–death model, extinction, macroevolution, phylogeny, protracted speciation, speciation.

Speciation takes time. Both detailed speciation models and fossil

data support this (Avise 1999; Gavrilets 2004; Norris and Hull

2012). Only in the case of speciation by polyploidy can specia-

tion happen in a single generation (McCarthy et al. 1995), but this

constitutes only 15–31% of all speciation events in plants (Wood

et al. 2009). Regardless of the underlying mechanism of specia-

tion, it is intriguing then to ask how long it takes for a new species

to form and what factors affect this duration. This question has

been identified as one of the key open questions by the Marie

Curie Speciation Network (2012). Here, we focus on the first part

of the question: how do we quantify the duration of speciation?

The answer may perhaps be found by studying fossil data,

but the incompleteness of the fossil record, apart from a few

exceptional cases (e.g., Ezard et al. 2011), limits this approach.

Even when there is much fossil data, estimates based on these

data will be biased because short-lived, young species are often

not recognized (Norris and Hull 2012). Molecular phylogenies

provide an alternative route that may shine light on this question.

Since the pioneering work of Avise and colleagues (Avise and

Walker 1998; Avise et al. 1998), little progress has been made

in the last decade, until recently, Etienne and Rosindell (2012)

studied a lineage diversification model assuming that, following

ideas of Purvis et al. (2009) and Rosindell et al. (2010), speciation

is a gradual, protracted process. There is continual formation of

incipient species that undergo the speciation process and become

good species upon completion of this process. Both good and

incipient species can produce new incipient species. A species

thus consists of a complex of all lineages that are not separated
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by a speciation-completion event. The model predicts the often

observed slowdown of lineage accumulation toward the present

(Etienne and Rosindell 2012, see also Purvis et al. 2009) because

incipient species that are currently in the process of formation

are not yet identified as good species. The protracted specia-

tion model may therefore also be viewed as a model of species

recognition, that is, of the observer’s ability to distinguish differ-

ent species (Purvis et al. 2009), but evidently the probability of

species recognition depends strongly on the progress in the spe-

ciation process, that is, the accumulation of a sufficient number

of differences or (reproductive) incompatibilities to attract taxo-

nomic attention (Purvis et al. 2009; Etienne and Rosindell 2012).

Whether species are considered to be good or not depends cru-

cially on one’s species concept. We deliberately do not single out

any particular species concept because the protracted speciation

model is conceptually independent of the species concept; only

the interpretation of the rate of speciation-completion will vary

with different approaches to species delineation.

The protracted speciation model provides a prediction for

the duration of completed speciation events for a given set of

model parameters (Etienne and Rosindell 2012). Etienne and

Rosindell (2012) developed a likelihood approach for the pro-

tracted speciation model to estimate the model parameters from

the phylogeny of extant species, in the absence of extinction, and

to compare model performance with that of other models. Lambert

et al. (2014) developed a new mathematical framework that allows

the computation of the likelihood of the protracted model given

the phylogeny also for the case that extinction is nonzero. This

approach is based on a coalescent point process representation

(Popovic 2004; Lambert 2010; Lambert and Stadler 2013). Here,

we implement this method in an R package, called Protracted

Birth-Death (PBD). Furthermore, we present various properties

of the duration of speciation, also incorporated in PBD. We study

on simulated data how well the model parameters (rate of initia-

tion of speciation, rate of extinction of incipient and good species,

and rate of completion of speciation) as well as the expected du-

ration of speciation can be estimated. We find that although the

model parameters cannot be reliably estimated, the duration of

speciation, which is a function of these model parameters, can

be reliably estimated. We illustrate our method with a primates

phylogeny from Fabre et al. (2009). Our estimate of the duration

of speciation for this clade is plausible in the light of the literature

(Curnoe et al. 2006), lending further support to the utility of the

protracted speciation model.

Methods
MODEL

Here, we outline the protracted speciation model which is

schematically represented in Figure 1A. The protracted speci-
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Figure 1. The protracted speciation model. (A) Schematic

overview of transitions. Incipient species and good species pro-

duce incipient species at rate b . Each stage has its own extinction

rate μi and incipient species become good at rate λ. (B) Illus-

tration of the problem of identifying good species and the first-

order correction we make, following Lambert et al. (2014). Solid

lines denote good species, dashed lines denote incipient species,

filled circles denote speciation-completion events, arrows indicate

the parent species and lowercase letters denote different taxa.

Taxon a is a good yet extinct species that gave rise to taxon

b, which in turn produced taxon c that underwent speciation-

completion in panel I, whereas in panel II taxon b underwent

speciation-completion. Biologically, there are two good (represen-

tative) species in both panels: in panel I taxon b is representa-

tive of species a and taxon c is a different species, whereas in

panel II taxon c is representative of species a and taxon b is

a different species. The approach of Lambert et al. (2014) is an

approximation, in that it recognizes two good extant species in

panel I but only one good extant species in panel II, as taxon c is

not considered to represent species a, but an incipient species of

species b.

ation model assumes that there are speciation-initiation events

at which incipient species are formed. These incipient species

may become good species, and when they eventually become

good, speciation is said to be completed. Both incipient and good

species are subject to extinction and both are able to give rise to
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incipient species. Thus, a species consists of a good (or repre-

sentative, see below) species and all its extant incipient descen-

dants (or relatives): speciation-completion events separate differ-

ent species, but these events are not recorded in the phylogeny,

because it is the speciation-initiation event that marks the time of

divergence.

We will focus here on the time-homogeneous Markov ver-

sion of the model, that is, the rate parameters are independent

of time, implying that all waiting times are exponentially dis-

tributed, but we note that time-dependence of the parameters can

be easily taken into account (see Lambert et al. 2014). We use

the following notation: by i we denote the stage of the species

where i = 1 for the incipient stage and i = 2 for the good stage;

bi is the speciation-initiation rate, that is, the rate at which species

in stage i produce incipient species; μi is the extinction rate of

species in stage i and λ is the speciation-completion rate, that

is, the rate at which incipient species become good. For ana-

lytical tractability (see below), we must assume that all rates

of speciation-initiation are equal: b1 = b2 = b. This assumption

implies that all topologies are equally likely as in the constant-

rate birth–death model (Lambert et al. 2014); if this assumption

is relaxed, we can obtain more balanced or more unbalanced

trees than in the constant-rate birth–death model (Etienne and

Rosindell 2012). To keep the number of parameters manageable,

we also assume that incipient and good species become extinct

at the same rate. μ1 = μ2 = μ (but this is not a technical neces-

sity). We note that the protracted speciation model as introduced

by Etienne and Rosindell (2012) thus covers the three principal

controls of speciation rate identified by Dynesius and Jansson

(2014): (1) splitting control, that is, rate of speciation-initiation;

(2) persistence control, that is, rate of extinction of incipient

species; (3) duration control, that is, the speciation-completion

rate.

There is a biologically complicating factor: an incipient

species with a good but extinct species as ancestor should be

regarded as a representative of this ancestor, and therefore a good

species (see Etienne and Rosindell 2012; Lambert et al. 2014),

but only allowing species to be good if they have experienced the

transition from incipient to good species ignores this. Lambert

et al. (2014) developed a first-order correction of this: it distin-

guishes incipient and representative species; the latter are either

true good species or the first descendant from a good (but extinct)

species (in some natural ordering of all its extant descendants).

We expect this correction to be a good approximation if the rate

of speciation-initiation is not too large. From hereon, we will use

this model of Lambert et al. (2014) and call these representative

species good species. We refer to Etienne and Rosindell (2012)

and Lambert et al. (2014) for more details on the protracted spe-

ciation model.

LIKELIHOOD

Lambert et al. (2014) derived the likelihood of the branching times
→
x = (x1, ...xn−1)—where xn−1 = T , the crown age of a phylogeny

of n extant and m missing species (that are all good or representa-

tive of an extinct good species)—conditional on a speciation event

at the crown age and the survival of the two crown lineages. As-

suming that the missing species arise from n-sampling (Etienne

et al. 2012; Lambert and Stadler 2013; Lambert et al. 2014) rather

than ρ-sampling (binomial sampling), the likelihood is given by

Lambert et al.’s equation (7):

Lc(
→
x , m) = (n − 1)!

n!m!

(n + m)!
(1 − g(T ))2

n−2∏
i=1

f (xi )

∑
→
m|m1+···+mn=m

n∏
j=1

(m j + 1)g(x j )
m j . (1)

Here we used the convention, xn = xn−1 = T ; the factorial

(n − 1)! can be dropped when calculating the likelihood of the

phylogeny (oriented tree) rather than the branching times, and

replaced by 2n−1

n! when calculating the likelihood of labeled trees

(Stadler 2013). The functions f = − dg
dt and g can be found by

solving a system of four ordinary differential equations, that is,

Lambert et al.’s equations (10), (11), (25), (26) and their very last,

unnumbered, equation (for gr ). These equations read, dropping

Lambert et al.’s superscripts to simplify notation,

dg

dt
= − b(1 − p1)g (2a)

dp1

dt
= − (λ + μ1 + b) p1 + λq2 + μ1 + bp2

1 (2b)

dq1

dt
= − (λ + μ1 + b)q1 + λq2 + μ1 + bq2

1 (2c)

dq2

dt
= − (μ2 + b)q2 + μ2 + bq2q1 (2d)

with

g(0) = p1(0) = 1, q1(0) = q2(0) = 0. (3)

Here, p1 is the probability that a species in the incipient

stage at time t (measured in My before the present) has no good

descending species that have extant descendants at the present

(t = 0). q j denotes the probability that a species in stage j at time

t has no extant descendants at the present, that is, that the lineage

is extinct; q2 is thus the probability that a species in the good stage

at time t has no extant descendants at the present. Equations (2c)

and (2d) are similar to equations (7a) and (7b) in the BiSSE model

(Maddison et al. 2007); indeed, all these equations describe the
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dynamics of extinction probabilities depending on the state of

the lineage. However, they crucially differ because (1) in BiSSE

transitions between states happen in both directions, whereas in

the protracted model there is no transition from good to incipient,

and (2) in BiSSE at speciation, the daughter species inherit the

state of the parent, whereas in the protracted model good species

give rise to incipient species.

To obtain the likelihood, we have to integrate this set of

equations numerically and evaluate its solution at the branching

times
→
x . This likelihood can be used to estimate parameters by

likelihood optimization. We provide the R package PBD to com-

pute and maximize the likelihood. This package also allows time-

dependent rates of speciation-initiation, speciation-completion,

and extinction.

ROBUSTNESS OF MAXIMUM LIKELIHOOD (ML)

To assess the robustness (particularly bias) of the ML approach in

yielding the correct parameter values, we simulated 1000 phylo-

genetic trees under the protracted speciation model for various

sets of parameters (b = 0.5, λ = 0.1, 0.3, 1, μ1 = μ2 = μ =
0, 0.1, 0.2), and a fixed crown age of 5, 10, or 15 My, condi-

tional on the realized tree retaining the initial root (i.e., survival of

both original crown lineages). We used the function pbd_sim_cpp

to perform these simulations. This function uses the coalescent

process to efficiently simulate branching times (see Lambert

et al. 2014). We then estimated the parameters using ML. For

each set of estimated parameters, we evaluated the mean or ex-

pected duration of speciation τ (from hereon simply duration of

speciation), which is defined as the time it takes for an incipient

species to become good or to have a descendant become good.

An expression for the expected duration of speciation is given by

Etienne and Rosindell (2012):

τmean = 2

D − λ + b − μ1
log

(
2

1 + λ−b+μ1

D

)
, (4)

where

D =
√

(λ + b)2 + 2 (λ − b) μ1 + μ2
1

=
√

(λ + b − μ1)2 + 4λμ1. (5)

The duration of speciation differs from the speciation-

completion time in that the latter is the waiting time until a single

incipient lineage completes the speciation process if extinction

was zero, whereas the former is the time needed for an incipient

species or one of its descendants to complete speciation, condi-

tional on the fact that speciation completes, that is, this is the time

taken by any species that succeeded in speciating completely.

To evaluate the potential bias introduced when fitting the

standard birth–death model to phylogenies, ignoring the effect of

protracted speciation, we fitted the standard, unprotracted, birth–

death model to the simulated data as well.

EMPIRICAL EXAMPLE

To illustrate our approach, we applied it to a clade that satisfied

two conditions: (1) a reasonably sized and sampled phylogeny is

available, and (2) some independent estimates of the duration of

speciation are known from the literature. Because literature on

this topic is scarce, the second condition is the most stringent. One

study that meets this condition is a relatively recent and in-depth

paper by Curnoe et al. (2006) on the duration of speciation in

primates. The first condition is also satisfied for primates because

Fabre et al. (2009) provide a primate phylogeny with 273 tips and

103 missing species. The data we used are deposited in Dryad

(datadryad.org/resource/doi:10.5061/dryad.8492,particularly da-

tadryad.org/bitstream/handle/10255/dryad.8494/PRIMATES-C-

hronogram_273_taxa.tre?sequence = 1). To check for robus-

tness, we compared the results to the four timetrees provided

by Springer et al. (2012), available as Supporting Informa-

tion, Text S2, Newick timetrees 1–4 (doi:10.1371/journal.

pone.0049521.s008). These timetrees differ in the relaxed clock

model used (autocorrelated or independent evolutionary rates

with hard-bounded or soft-bounded constraints).

We estimated the parameters of the protracted speciation

model for this clade, including the missing species using the n-

sampling likelihood approach outlined above, and computed the

duration of speciation. Here, we not only computed the expected

duration but also the full probability density. This density can

be computed, using the same considerations as in Etienne and

Rosindell (2012), and yields:

ρ(τ) = 2D2e−Dτ(D + ϕ)

(D + ϕ + e−Dτ(D − ϕ))2
, (6)

where

ϕ = λ − b + μ1. (7)

This probability density attains a maximum at

τopt = max

(
0,

1

D
ln

(D − ϕ)

(D + ϕ)

)
. (8)

The density, mode and any quantile, or moment (in-

cluding the mean) can be computed with the package PBD,

available on CRAN and on Dryad (datadryad.org/resource/doi:

10.5061/dryad.js88n), together with the simulated data and R

code.

With the estimated parameter values, we ran 1000 simula-

tions to obtain a bootstrap estimate of the error in our estimated

mean duration of speciation. It also provided a way to assess the

goodness-of-fit of the model by comparing simulated lineage-

through-time plots with the observed one.

EVOLUTION AUGUST 2014 2 4 3 3
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Results and Discussion
In our test of the protracted speciation model on phylogenies with

known parameter values, we found that for the simulations for

small crown ages, the ML optimization often did not converge,

indicating a very flat likelihood surface and hence very limited

information in the data. Indeed, clade sizes were often small, less

than 10 species, and often only two, the minimum produced by

the simulations as they were conditioned on survival of the crown

lineages. With three parameters to be estimated, small clades sim-

ply leave too few degrees of freedom to allow reliable parameter

estimation. We therefore restricted further analysis to a crown age

of 15 My to get reasonably sized clades for all parameter combi-

nations considered. We found that the parameter estimates of the

speciation-initiation rate and the extinction rate are often biased

and highly variable, particularly for low speciation-completion

rates and high extinction rates (Fig. 2A and B). However, the es-

timates for the incipient diversification rate (speciation-initiation

rate minus extinction rate), the speciation-completion rate, and

particularly the duration of speciation contain little bias and rela-

tively little variation (Fig. 2C–E), and thus this seems a promising

new approach for estimating temporal characteristics of the spe-

ciation process. Although clade size has a substantial effect on

how well individual parameters (i.e., extinction) are estimated,

it scarcely has an effect on the quality of the estimation of the

duration of speciation (Fig. S1).

When fitting the standard, unprotracted, birth–death model

to the simulation data, we found that the estimated speciation rate

largely underestimated the speciation-initiation rate and increased

with increasing speciation-completion rate (Fig. S2A). The latter

is the expected behavior because the number of species decreases.

However, we observed no clear relationship between the estimated

speciation rate and the parameters controlling speciation in the

protracted model. Hence, fitting the standard birth–death model

in cases when speciation is protracted may be highly misleading.

When we applied our approach to the primate clade of Fabre

et al. (2009), we found that the speciation-initiation rate and the

extinction rate produce a likelihood ridge in the b – μ -plane,

whereas the speciation-completion rate is orthogonal to the other

parameters (Fig. 3A). This is reminiscent of the well-known prop-

erty of the constant-rate birth–death model that the net diversifi-

cation rate can be estimated reliably, but the ratio of speciation

and extinction rates cannot (Paradis 2004; Rabosky 2010; Aldous

et al. 2011; Etienne et al. 2012; Stadler 2013), which was con-

firmed in our simulations. The expected duration of speciation,

calculated from the ML estimates, is around 0.61 My, whereas

the median is 0.45 My. The bootstrap values range between 0.02

and 1.12 My and have a mean and median of 0.61 My (so ex-

tremely close to our ML estimate indicating there is no bias) and

a standard deviation of 0.14 My (Fig. 3B), which can be used

as an estimate of the error in the expected duration of specia-

tion. Allowing different rates of extinction for good or incipient

species changes the model parameters substantially (with incipi-

ent species going extinct at a higher rate than good species), but

not the duration of speciation. For the four timetrees of Springer

et al. (2012), we obtained expected durations of speciation of 0.66

(autocorrelated rates with hard-bounded constraints), 0.65 (auto-

correlated rates with soft-bounded constraints), 0.51 (independent

rates with hard-bounded constraints), and 0.43 (independent rates

with soft-bounded constraints).

Our estimates are in line with those of Curnoe et al. (2006)

who suggested a maximum duration of speciation of around

1 million years based on the difference between divergence times

of sister species and interphylogroup divergence times. Curnoe

et al. (2006) argued that this is not the same as the time needed

for full reproductive isolation, which in their opinion can be much

larger (up to 4 My). For our analysis, strict adherence to this bi-

ological species concept would mean that many of the tips in the

phylogeny should still be considered incipient species. We would

arrive at a smaller tree with longer branching times, giving rise

to a larger duration of speciation. Thus, estimates of the duration

of speciation are always directly related to the taxonomy used:

species in the tree are assumed to be good species that have com-

pleted the speciation process according to our species concept.

The values for the inverse of the speciation-completion rate

and the duration of speciation may be very different because the

latter is also affected by the speciation-initiation rate and the

extinction rate as equation (4) shows. We may expect very high

values of b with very low values of λ: very frequent speciation-

initiation, with only an occasional completion of the speciation

process. This idea was already coined by Mayr (1963) and Stanley

(1978) who called the unsuccessful species “aborted species”

as they indeed prematurely become extinct. Rosenblum et al.

(2012) proposed a model for the idea, the ephemeral speciation

model, which is a special case of the protracted speciation model

where rates of speciation-initiation are high but rates of speciation-

completion are low. Recent support comes from Phillimore et al.

(2007) who found subspeciation rates to be much higher than

speciation rates, and from Levin (2012) in his discussion of the

long time for hybrid sterility to arise in flowering plants.

The lineage-based protracted speciation model has been in-

troduced phenomenologically (Etienne and Rosindell 2012), but

has a mechanistic basis in the simplest null model of the fam-

ily of Bateson-Dobzhansky-Muller speciation models (Gavrilets

2004, p. 131). This null model starts with a two-loci, two-allele

haploid population with haplotype ab fixed where alleles a and

B are assumed to be incompatible. It produces incipient species

by (irreversible) mutation of the first allele from a to A. This

incipient species, with haplotype Ab, is assumed to be spatially

isolated from the mother species (no migration). Speciation com-

pletes when the second allele mutates (irreversibly) from b to B,

2 4 3 4 EVOLUTION AUGUST 2014
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Figure 2. Distribution of the estimated parameters. (A) Speciation-initiation rate, (B) extinction rate, (C) incipient diversification rate

(speciation-initiation rate minus extinction rate), (D) speciation-completion rate, (E) duration of speciation in species that complete the

speciation process (a composite of the speciation-initiation rate, the speciation-completion rate, and the extinction rate, eq. 4). The

distribution represents the estimates for 1000 replicate simulations (red bars), their mean value (shortest, blue, arrow), the median

(medium-sized, green, arrow), and the true simulation value (longest, black, arrow) for various simulation parameter sets: speciation

initiation rate is 0.5 (all panels), the extinction rate μ takes the values 0, 0.1, and 0.2 (rows), and the speciation completion rate λ takes the

values 0.1, 0.3, and 1 (columns). The simulated trees all had a crown age of 15 My. The last bar in the histograms contains all simulations

with a value equal or larger than the corresponding value on the x-axis.
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Figure 2. Continued

resulting in a population of haplotype AB. The daughter species

and the parent species are incompatible because one carries the

a-allele and the other the B-allele. There are many possible ex-

tensions of this null model of mutation and drift, considering the

divergence of two rather than one populations (i.e., not only the

daughter species undergoes mutation), migration, local adapta-

tion, and reversibility of mutations, but all two-loci two-allele

models in Gavrilets (2004) that require only one incompatibility

for speciation to be complete, have a speciation-completion time

that is exponentially distributed. This is the crucial feature that

is incorporated in the protracted speciation model as described

above.

There are also multidimensional versions of the BDM model

where a certain number of incompatibilities are required for spe-

ciation to complete (Orr 1995; Gavrilets 2004; Wang et al. 2013).

In such cases, the speciation-completion time is no longer ex-

ponentially distributed. Etienne and Rosindell (2012) proposed

that such models can be mimicked by the protracted speciation

model with multiple incipient stages. The probability density of

the speciation-completion time is a convolution of exponential

distributions. For instance, in the special case that the transi-

tion rates are all the same, the speciation-completion time has a

Gamma distribution. Lambert et al. (2014) provided a likelihood

formula for this model (where transition rates are allowed to be

different), and it seems that our method can thus be readily ex-

tended to more realistic versions of the BDM model, and that

comparison of the performance of these models on phylogenetic

trees would allow us to infer how hybrid incompatibilities build

up over time. However, not only does the computation of the

duration of speciation become problematic in this case because

the mathematical machinery that Etienne and Rosindell (2012)

employed to derive an expression for the duration of speciation is

no longer applicable, the model itself needs reconsidering. Imag-

ine, for example, that in a model with three incipient stages, we

have an incipient species in the third incipient stage. It produces

a new incipient species (at rate b). Then what incipient stage does

this new incipient species have? With respect to its parent incip-

ient species, it has stage 1, but with respect to the grandparent
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Figure 3. Application of the protracted speciation model to the primate clade. (A) Projections of the log-likelihood surface around the

likelihood optimum for the primate clade; the third parameter is always kept at its maximum likelihood (ML) value. All log-likelihood

values lower than −1000 are in dark blue (black on black-and-white version). (B) Probability density distribution of the duration of

speciation at the ML parameter estimates. This provides insight in the variation across the clade: although the mode predicts that most

speciation events will be short, there is a substantial tail of the distribution at long durations. (C) Bootstrap distribution of the duration

of speciation for the ML parameter estimates. This provides insight in the bias and uncertainty of the expected duration of speciation: the

longest (black) arrow indicates the expected duration at the ML estimates (see also panel A), whereas the medium (green) and shortest

(blue) arrows indicate the median and mean of the bootstrap values, respectively.

species, it is also in stage 3 as it has accumulated the same num-

ber of incompatibilities with the grandparent as the parent (and

perhaps even one more, depending on how we view its differ-

ence from the parent). Because of these considerations, we argue

that a more detailed analysis of the build-up of incompatibili-

ties is needed to make inferences on which BDM model is most

likely (see Wang et al. 2013 for a promising direction). Outside of

the BDM framework, matters get even trickier (see, e.g., Chevin

et al. 2014).

Although we thus caution against overinterpreting and ex-

tending the lineage-based model of protracted speciation and

welcome new models of protracted speciation with fewer limi-

tations, the protracted speciation model with a single incipient

stage is still a coherent model that can act as a proper null model

of macroevolution that accounts for the fact that speciation takes

time. Every model is a simplification of reality, and the art of

modeling consists in incorporating the key elements. We argue

that incorporating the fact that speciation takes time is such a

key element leading to a new perspective and a major improve-

ment compared to the constant-rate birth–death model, whereas

incorporating a more realistic distribution for the waiting time to

speciation-completion is the obvious next step.

The rate of speciation-completion in the protracted specia-

tion model is linked to the more commonly known rate at which

populations acquire reproductive isolation. Rabosky and Matute

(2013) found that the macroevolutionary speciation rates, as esti-

mated from phylogenies, are decoupled from rates of acquisition

of reproductive isolation in birds and Drosophila. At first sight,

this may seem to be at odds with the basic prediction from the pro-

tracted speciation model that longer time to speciation-completion
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leads to lower species diversity (because incipient species may

go extinct before speciation-completion) and hence an overall

smaller rate of speciation. To explore this paradox further, we esti-

mated the speciation rate with the constant-rate birth–death model

(as Rabosky and Matute 2013 did) and the speciation-completion

rate with the protracted speciation model from the phylogenetic

branching times for 80 bird clades (there are no complete phy-

logenies available for Drosophila). We observed that the correla-

tion between the two rates was in fact weak for low speciation-

completion rates (Fig. S3). In our simulations, we also found

only slight variation in the estimated speciation rates with one

order of magnitude variation in the rate of speciation-completion

(Fig. S2). Hence, this agrees with Rabosky and Matute’s (2013)

findings of apparent decoupling between speciation rate and re-

productive isolation. The paradox can be resolved by recognizing

that the speciation rate estimated using a constant-rate birth–death

model is meaningless if speciation is considerably protracted, and

hence conclusions on decoupling of these rates are premature.

The protracted speciation model can explain slowdowns in

lineage accumulation through time, but it is not the only model

that can do this (see reviews by Morlon 2014 and Moen and

Morlon 2014). Time-dependence (Nee et al. 1992, 1994; Morlon

et al. 2011; Stadler 2011) and diversity-dependence (Valentine

1973; Nee et al. 1992; Rabosky and Lovette 2008; Phillimore

and Price 2008; Rabosky 2009; Etienne et al. 2012) of specia-

tion and extinction rates have similar effects (Moen and Mor-

lon 2014). The availability of the likelihood for the protracted

speciation model now allows explicit comparisons of model per-

formance on the wealth of currently available phylogenies. Al-

though such a meta-analysis is interesting, we argue that its

conclusions are limited to the precise mathematical formulation

of the time-dependence, diversity-dependence, or protractedness

of speciation. For instance, several mathematical formulations of

diversity-dependence have been proposed, such as a linearly or an

exponentially declining speciation rate, or increasing extinction

rate. Similarly, the choice of functions in time-dependent speci-

ation and extinction is endless, and our discussion on the BDM

model suggests a multitude of alternative protracted speciation

models. We expect that phylogenetic branching times alone will

not contain sufficient information to single out any of these mod-

els: the likelihoods will be quite similar, or can be made similar

by choosing a different function of time or diversity, or a different

waiting time distribution for speciation-completion. We base this

expectation on the results of Purvis et al. (2009) who found de-

cisive support for diversity-dependence in only one (Dendroica)

out of 14 avian clades, and on a pilot study we conducted our-

selves on the 45 avian clades of Phillimore and Price (2008).

Choosing between these alternative models should therefore in-

volve other types of data. Because the diversity-dependent model

predicts a different historical diversity than time-dependence or

protracted speciation, fossil data will be crucial for model se-

lection. Topological features of phylogenies may also be infor-

mative: the protracted speciation, with differential speciation-

initiation rates (good and incipient species produce new incipient

species at different rates), naturally allows for imbalanced phylo-

genies (Etienne and Rosindell 2012), whereas time-dependence

and diversity-dependence cannot do so without rate heterogeneity

between lineages (but see Etienne and Haegeman 2012 for a par-

ticular extension of the diversity-dependent model that does pro-

duce imbalanced phylogenies without rate heterogeneity). There

are also more philosophical argument to prefer one model over

the other. Time-dependence may seem an ad hoc explanation as

it requires external forcing, but in the presence of such exter-

nal forcing, it becomes the most obvious explanation. Diversity-

dependence relies on the assumption that ecological limits are

inhibiting diversification just at the present day, but not in the past

(but see Etienne and Haegeman 2012 for a possible resolution of

this paradox), whereas slowdowns in lineage accumulation near

the present arises naturally, without additional assumptions, under

the protracted speciation model. This feature works in favor of the

protracted speciation model, even if a particular implementation

of it is outperformed quantitatively by an alternative model.

We estimated the duration of speciation for the primate tree

using a consensus tree. Currently, phylogenetic trees are usu-

ally built using a standard, nonprotracted birth–death model, or

even a simple Yule model as the prior for the species tree. Ide-

ally, the protracted speciation model should be implemented as a

species tree prior in phylogenetic reconstruction software pack-

age such as BEAST (Drummond and Rambaut 2007), MrBayes

(Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck

2003), or RevBayes (Höhna et al. 2013), and protracted specia-

tion parameter values can then be directly taken from the Bayesian

posterior distribution of these parameters when reconstructing the

phylogeny from sequence alignments. This implementation is not

trivial, however, because considering that speciation is protracted

not just affects the species tree prior, but also the probability dis-

tribution of the gene tree when we have multiple samples per

species.

We see a fruitful future for applying the methods developed

in this article to detect changes in the duration of speciation along

environmental gradients. For instance, it allows studying how

the duration of speciation changes with latitude or across biogeo-

graphic realms, and how it depends on species’ traits, for example,

body size. We hope that this article will stimulate these research

areas to deepen our understanding of macroevolution.
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38:348–395.

Lambert, A., H. Morlon, and R. S. Etienne. 2014. The reconstructed tree in
the lineage-based model of protracted speciation. J. Math. Biol. In press.
doi: 10.1007/s00285-014-0767-x.

Lambert, A., and T. Stadler. 2013. Birth-death models and coalescent point
processes: the shape and probability of reconstructed phylogenies.
Theor. Popul. Biol. 90:113–128.

Levin, D. A. 2012. The long wait for hybrid sterility in flowering plants. New
Phytol. 196:666–670.

Maddison, W. P., P. E. Midford, and S. P. Otto. 2007. Estimating a binary
character’s effect on speciation and extinction. Syst. Biol. 56:701–710.

Mayr, E. 1963. Animal species and evolution. Harvard Univ. Press, Cam-
bridge, MA.

McCarthy, E. M., M. A. Asmussen, and W. W. Anderson. 1995. A theoretical
assessment of recombinational speciation. Heredity 74:502–509.

Moen, D., and H. Morlon. 2014. Why does diversification slow down? Trends
Ecol. Evol. In press. doi:10.1016/j.tree.2014.01.010.

Morlon, H. 2014. Phylogenetic approaches for studying diversification. Ecol.
Lett. 17:508–525.

Morlon, H., T. Parsons, and H. Plotkin. 2011. Reconciling molecular phylo-
genies with the fossil record. Proc. Natl. Acad. Sci. USA 108:16327–
16332.

Nee, S., A. Ø. Mooers, and P. H. Harvey. 1992. Tempo and mode of evolu-
tion revealed from molecular phylogenies. Proc. Natl. Acad. Sci. USA
89:8322–8326.

Nee, S., R. M. May, and P. H. Harvey. 1994. The reconstructed evolutionary
process. Philos. Trans. R. Soc. Lond. B 344:305–311.

Norris, R. D., and P. M. Hull. 2012. The temporal dimension of marine
speciation. Evol. Ecol. 26:393–415.

Orr, H. 1995. The population genetics of speciation: the evolution of hybrid
incompatibilities. Genetics 139:1085–1813.

Paradis, E. 2004. Can extinction rates be estimated without fossils? J. Theor.
Biol. 229:19–30.

Phillimore, A. B., C. D. L. Orme, R. G. Davies, J. D. Hadfield, W. J. Reed, K.
J. Gaston, R. P. Freckleton, and I. P. F. Owens. 2007. Biogeographical
basis of recent phenotypic divergence among birds: a global study of
subspecies richness. Evolution 61:942–957.

Phillimore, A. B., and T. D. Price. 2008. Density-dependent cladogenesis in
birds. PLoS Biol. 6:0483–0489.

Popovic, L. 2004. Asymptotic genealogy of a critical branching process. Ann.
Appl. Probab. 14:2120–2148.

Purvis, A., C. D. L. Orme, N. H. Toomey, and P. N. Pearson. 2009. Temporal
patterns in diversification rates. Chap. 15. Pp. 278–300 in R. Butlin,
D. Schluter, and J. Bridle, eds. Speciation and patterns of diversity.
Cambridge Univ. Press, Cambridge, U.K.

Rabosky, D. L. 2009. Ecological limits and diversification rate: alternative
paradigms to explain the variation in species richness among clades and
regions. Ecol. Lett. 12:735–743.

———. 2010. Extinction rates should not be estimated from molecular phy-
logenies. Evolution 64:1816–1824.

Rabosky, D. L., and I. J. Lovette. 2008. Density-dependent diversification
in north american wood warblers. Proc. R. Soc. Lond. B 275:2363–
2371.

Rabosky, D., and D. Matute. 2013. Macroevolutionary speciation rates are
decoupled from the evolution of intrinsic reproductive isolation in
Drosophila and birds. Proc. Natl. Acad. Sci. USA 110:15354–15359.

Ronquist, F., and J. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic
inference under mixed models. Bioinformatics 19:1572–1574.

Rosenblum, E. B., B. A. J. Sarver, J. W. Brown, S. D. Roches, K. M. Hardwick,
T. D. Hether, J. M. Eastman, M. W. Pennell, and L. J. Harmon. 2012.
Goldilocks meets Santa Rosalia: an ephemeral speciation model explains
patterns of diversification across time scales. Evol. Biol. 39:255–261.

Rosindell, J., S. J. Cornell, S. P. Hubbell, and R. S. Etienne. 2010. Pro-
tracted speciation revitalizes the neutral theory of biodiversity. Ecol.
Lett. 13:716–727.

EVOLUTION AUGUST 2014 2 4 3 9



BRIEF COMMUNICATION

Springer, M., R. Meredith, J. Gatesy, C. Emerling, J. Park, D. Ra-
bosky, T. Stadler, C. Steiner, O. Ryder, J. Jacnecka, et al. 2012.
Macroevolutionary dynamics and historical biogeography of primate
diversification inferred from a species supermatrix. PLoS One 7:
e49521.

Stadler, T. 2011. Mammalian phylogeny reveals recent diversification rate
shifts. Proc. Natl. Acad. Sci. USA 108:6187–6192.

———. 2013. How can we improve accuracy of macroevolutionary rate esti-
mates? Syst. Biol. 62:321–329.

Stanley, S. M. 1978. Chronospecies longevities, origin of genera, and punc-
tuational model of evolution. Paleobiology 4:26–40.

The Marie Curie Speciation Network. 2012. What do we need to know about
speciation? Trends Ecol. Evol. 27:27–39.

Valentine, J. W. 1973. Evolutionary paleoecology of the marine biosphere.
Prentice-Hall, Eaglewood Cliffs, NJ.

Wang, R., C. Ane, and B. Payseur. 2013. The evolution of hybrid incompati-
bilities along a phylogeny. Evolution 67:2905–2922.

Wood, T. E., N. Takebayashi, M. S. Barker, I. Mayrose, P. B. Greenspoon,
and L. H. Rieseberg. 2009. The frequency of polyploid speciation in
vascular plants. Proc. Natl. Acad. Sci. USA 106:13875–13879.

Associate Editor: L. Harmon

Supporting Information
Additional Supporting Information may be found in the online version of this article at the publisher’s website:

Figure S1. The (relative) error in estimating the parameters as a function of clade size (A) speciation-initiation rate, (B) extinction rate, (C) incipient
diversification rate (speciation-initiation rate minus extinction rate), (D) speciation-completion rate, (E) duration of speciation in species that complete the
speciation process (a composite of the speciation-initiation rate, the speciation-completion rate, and the extinction rate, eq. 4).
Figure S2. Speciation rates estimated with a constant-rate birth–death model from phylogenies simulated with the protracted speciation model.
Figure S3. Speciation rate, estimated using the constant-rate birth–death model, versus the speciation-completion rate, estimated using the protracted
speciation model, for 80 avian clades.
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