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Abstract14

We quantify the spatio-temporal evolution of the substorm ionospheric current system15

utilizing the SuperMAG 100+ magnetometers. We construct dynamical directed networks16

from this data for the first time. If the canonical cross-correlation (CCC) between vec-17

tor magnetic field perturbations observed at two magnetometer stations exceeds a thresh-18

old, they form a network connection. The time lag at which CCC is maximal determines19

the direction of propagation or expansion of the structure captured by the network con-20

nection. If spatial correlation reflects ionospheric current patterns, network properties21

can test different models for the evolving substorm current system. We select 86 isolated22

substorms based on nightside ground station coverage. We find, and obtain the timings23

for, a consistent picture in which the classic substorm current wedge (SCW) forms. A24

current system is seen pre-midnight following the SCW westward expansion. Later, there25

is a weaker signal of eastward expansion. Finally, there is evidence of substorm-enhanced26

convection.27

1 Plain Language Summary28

Space weather makes beautiful auroral displays (the northern and southern lights),29

but with these come large-scale electrical currents in the ionosphere which generate dis-30

turbances of magnetic fields on the ground. These are observed by > 100 magnetome-31

ter stations on the ground, and the challenge is to extract the important information from32

these many observations and present it as a few key parameters that indicate how se-33

vere the ground impact will be. Networks are now a common analysis tool in societal34

data, where people are linked based on various social relationships. Other examples of35

networks include the world wide web, where websites are connected via hyperlinks, or36

maps where places are linked via roads. We have constructed networks from the mag-37

netometer observations of space weather events (geomagnetic sub-storms), where mag-38

netometers are linked if there is significant correlation between the observations. There39

has been considerable debate as to how the ionospheric pattern evolves during a geomag-40

netic substorm. We are able to use the networks to resolve some of these controversies.41

2 Introduction42

Substorms, their associated current systems, and the corresponding geomagnetic43

displacements seen at earth, have been the subject of longstanding interest (Pulkkinen,44

2015). The fundamental morphology, stages of development, and their timings are well45

established (Akasofu, 1964). The classic scenario is that of the formation of a substorm46

current wedge (SCW) (McPherron, Russell, & Aubry, 1973), a rapidly appearing, intense47

westward electrojet that follows disruption to the cross-tail current system. This corre-48

sponds to the DP1 pattern of magnetic perturbations in the nightside auroral zone, which49

appears in addition to the DP2 geomagnetic counterpart associated with the convective50

system in the dawn and dusk auroral zones (Nishida, 1968). However, there have been51

several important variants of this picture. Kamide and Kokubun (1996) proposed a two52

component auroral electrojet, and Sergeev et al. (2011) argued that their computational53

wedge model is more consistent with observations, if an additional region two polarity54

field-aligned current is added to the classic SCW cartoon. Gjerloev and Hoffman (2014)55

proposed a two-wedge current system, comprised of a bulge and an oval current wedge,56

in their empirical model of the ionospheric equivalent current system, during an auro-57

ral substorm. Recently it was proposed, by Liu et al. (2018), that there is no large-scale58

westward electrojet but rather many small, individual segments. These proposed mod-59

els point to the outstanding question: what is the average substorm current system mor-60

phology that we can quantify and resolve uniquely from the full set of available ground-61

based magnetometer observations? The goal of this paper is to construct a method that62

quantifies the time-evolving spatial pattern seen across all 100+ magnetometers, in a man-63
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ner that allows systematic averaging across may substorm events. This will provide a64

quantitative benchmark to test against model predictions. Key aspects of many of the65

above models, whilst being physically distinctive, are qualitative. Our results place these66

qualitative predictions in direct contact with the observations, and can thus drive for-67

ward the formation of quantitative hypotheses that will allow these models to be distin-68

guished.69

The SuperMAG initiative (Gjerloev, 2012) makes the full set of 100+ ground-based70

magnetometer observations routinely available, with a standardized coordinate system71

and a common baseline, supporting both single event and comparative statistical stud-72

ies. In this form the data is now amenable to analysis methodologies designed to quan-73

tify spatio-temporal pattern in sets of multiple, spatially distributed observations. Com-74

plex network methodology has recently grown in popularity as a useful mathematical tool75

and has been used to analyse complex systems from a variety of disciplines ranging from76

social sciences (Albert & Barabási, 2002; Newman, 2003; Watts & Strogatz, 1998) to geo-77

physical data (Boccaletti, Latora, Moreno, Chavez, & Hwang, 2006; Malik, Bookhagen,78

Marwan, & Kurths, 2012; McGranaghan, Mannucci, Verkhoglyadova, & Malik, 2017; Stol-79

bova, Tupikina, Bookhagen, Marwan, & Kurths, 2014; Wiedermann, Radebach, Donges,80

Kurths, & Donner, 2016). Crucially, unlike other data assimilative methods, including81

AMIE (Richmond & Kamide, 1988), network analysis does not introduce spatial corre-82

lation. Furthermore, our network analysis does not require any a priori assumptions for83

variation in ground conductivity since we normalize for this using solely the data to de-84

termine the time and station dependent network threshold.85

Dods, Chapman, and Gjerloev (2015) recently demonstrated, on a small set of events,86

that a network methodology could be applied to the full set of magnetometers for sin-87

gle isolated substorms to yield a characteristic network signature of substorm onset. The88

networks are time-dependent, hence contain information on the timings of substorm evo-89

lution (Dods, Chapman, & Gjerloev, 2017). Canonical correlation is used to study cor-90

relations between multivariate datasets (Reinsel, 2003). If we have two vector time se-91

ries, canonical correlation analysis will determine the linear combination of the two which92

are maximally cross-correlated. The cross-correlation between these linear combinations93

is the (1st) canonical cross-correlation (CCC) component. The key elements of this net-94

work analysis are (i) to calculate the CCC of the vector magnetic field time series be-95

tween each pair of magnetometers and (ii) to apply a station and event specific thresh-96

old to this CCC, which is obtained directly from the data. The station pairs that have97

CCC above the threshold then form a time varying network.98

The analysis of Dods et al. (2015), only examined the undirected network (zero-99

lag CCC). This was sufficient to reveal the initial formation of the SCW at substorm on-100

set but without directional information could not capture the full spatio-temporal evo-101

lution of the current system. In this paper we construct the networks based on the (of-102

ten non-zero) time lags at which the CCC between each pair of stations is maximal, to103

form the substorm directed network, which captures the direction of information prop-104

agation between network nodes (magnetometers). Looking across a range of CCC lags105

captures the full pattern of spatial correlation and how it evolves in time. Non-zero CCC106

lags indicate the time-scale for propagation or expansion of a coherent structure and the107

sign of the lag gives the direction of propagation or expansion. We construct specific sub-108

networks to test the hypotheses of different proposed models for how the ionospheric cur-109

rent system evolves. The sub-networks isolate different spatial regions and allow us to110

test for connections between them. We will focus on spatially well-sampled isolated sub-111

storm events and establish network parameters that characterize how the magnetome-112

ters collectively respond to the SCW. We have identified 86 events that meet the sam-113

pling requirements (this is a subset of the substorm list used in the series of papers by114

Gjerloev and Hoffman (Gjerloev & Hoffman, 2014; Gjerloev, Hoffman, Sigwarth, & Frank,115

2007)). We find timings for a pattern in the magnetic field perturbations consistent with116
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the SCW formation at onset which then expands westward to form a coherent current117

system in the pre-midnight sector. There is additional weaker, eastward expansion of the118

SCW, followed by coherent correlation patterns spanning the entire nightside.119

The organization of the paper is as follows. In section 3 we describe the methods120

and the data used to obtain the directed networks. In section 4 we highlight a case study121

of one substorm and present a statistical survey 86 events which reveals how on aver-122

age the spatial pattern of correlation evolves as the substorm progresses. We conclude123

in section 5.124

3 Methods125

3.1 Constructing the dynamical directed network126

For each substorm we first construct the full dynamical directed network before di-127

viding it into sub-networks that flag spatial correlation within and between specific spa-128

tial regions. These regions are selected to test different proposed models of substorm cur-129

rent patterns. The term ’dynamical’ is used here as in the networks literature (Jost, 2007).130

Our analysis cannot resolve short-range fine structures that are smaller than, or of the131

order of the inter-magnetometer spacings, but can test whether long-range spatially cor-132

related patterns exist. The method for forming a network, at zero lag, is detailed in Dods133

et al. (2015). The magnetometer stations form the nodes of the network and a given pair134

of nodes are connected if the CCC of their vector magnetic field perturbation time se-135

ries exceeds an event and station specific threshold, as specified in Dods et al. (2015).136

In summary, the CCC is calculated over a 128 minute running window of the magnetic137

field perturbations observed by magnetometer pairs. The data is at minute resolution,138

giving a 128 point CCC for each station pair, every minute. The 128 minute sliding win-139

dow is chosen to give sufficient accuracy in the computed cross-correlation function whilst140

also capturing the large-scale spatial and temporal behaviour of the substorm current141

wedge. Dods et al. (2017) previously demonstrated using model time series that this win-142

dow length resolves changes on timescales much shorter than that of the window, specif-143

ically capturing onset where there is a sharp ramp in activity in time as the SCW forms.144

A network is calculated for every minute and all times, t, will refer to the leading edge145

of the window, that is the last time point spanned by the window (i.e. a window span-146

ning time interval [T, T + 127] will have network properties plotted at time t = T +147

127). Each windowed, three-component vector magnetic field time series is (1) linearly148

detrended and (2) the CCC is calculated for each station pair then (3) if the correlation149

between magnetometers i and j exceeds the maximum of the two station thresholds then150

they are connected and are part of the network. For a network with M active magne-151

tometers, an M×M adjacency matrix, A, is formed which has Aij = 1, if i and j are152

connected, and Aij = 0, otherwise. The station specific threshold for each magnetome-153

ter station is determined such that the station will be connected to the network for 5%154

of the month (28 days) surrounding the event. This ensures that all stations have the155

same likelihood of being connected to the network, independent of their individual sen-156

sitivities to an overhead current perturbation, which in turn depends on the individual157

instrument characteristics and the local time and season dependent ground conductiv-158

ity.159

Dods et al. (2015) constructed the network using just the CCC at zero lag. Here,160

we form the directed network by considering the lag at which the CCC is maximal, τc,161

up to a lag of ±15 minutes. The value of the CCC value at lag τc is used to determine162

if the stations are connected (exceeds the threshold) and each connection then also has163

a direction and timescale of propagation of the observed signal, which is spatially coher-164

ent between the two stations. This potentially corresponds to the coherent pattern of165

time-varying ionospheric currents. The adjacency matrix, A, is not symmetric and the166

sign of τcij determines the signal propagation direction for Aij . If the CCC between mag-167
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netometer i and j is above the threshold (they are connected), but with τc < 0, we can168

infer that the signal originates at j and propagates towards i, j → i. If τc > 0 the prop-169

agation is i→ j.170

Gjerloev (2012) found that the probability distributions of differences between Su-171

perMAG baselines and official quiet days rarely exceed 20nT. For consistency we also172

exclude magnetometers from the network whose time series of magnetic field perturba-173

tions never exceed this noise level.174

3.2 Data and event selection175

We analyse vector magnetometer time series at 1 minute time resolution for the176

full set of magnetometer stations available from the SuperMAG database. This data is177

processed as in Gjerloev (2012), such that the ground magnetic field perturbations are178

in the same coordinate system, and have had a common baseline removed. A set of iso-179

lated substorm events, occurring between 1997 − 2000, has been previously identified180

in Gjerloev et al. (2007). These events have been selected such that (i) they are isolated181

single events optically and magnetically; (ii) the onset location is spatially defined; (iii)182

bulge-type auroral events; (iv) there is a single expansion and recovery phase (or the end183

of the event is at the time of a new expansion); (v) the entire bulge region is in dark-184

ness to eliminate any terminator effects; and (vi) they are not during magnetic storms185

(|Dst| < 30nT) or prolonged magnetic activity. The requirement for darkness creates186

biases as the events with the majority of the nightside in darkness are in the months around187

winter solstice. Excluding daylit stations does however avoid large differences in ground188

conductivity between the stations which would otherwise dominate the CCC analysis.189

We also require that activity levels are low for a full window of 128 minutes before the190

substorm onset. Together these selection criteria, along with the requirement for a suf-191

ficient number of stations in the spatial region around onset (described below) give 86192

suitably isolated substorms (listed in the SI.)193

3.3 Normalization to a substorm epoch time194

It is well established that substorms vary in duration (Kullen & Karlsson, 2004;195

Tanskanen, Pulkkinen, Koskinen, & Slavin, 2002). In order to perform an average across196

many events we need to map each event onto a single normalized time-base such that,197

once normalized, all substorms share a common onset time and take the same length of198

time to evolve from onset to the peak of activity. Following Gjerloev et al. (2007), the199

observed event time, t, is related to the normalized time, t′, by:200

t′ =
TE × (t− tonset)
tpeak − tonset

(1)

where TE = 30 minutes, approximately the average length of a substorm expansion phase.201

The onset time is then at t′ = 0 and the time of peak expansion t′ = 30. The critical202

timings for this normalization, tonset and tpeak, can be unambiguously identified in these203

isolated substorm events.204

3.4 Sub-networks for specific auroral spatial regions205

We construct time-varying directed sub-networks that quantify correlation within212

and between specific spatial regions in the nightside. These spatial regions are selected213

for each event as shown in Figure 1. The network is constructed using stations located214

between 60−75◦ magnetic latitude and within the nightside. Gjerloev and Hoffman in-215

dividually determined the timings and positions of onset and the east and west ends of216

the bulge portion of the aurora using polar VIS images (Gjerloev et al., 2007). The LT217

of the bulge edges at the time of maximum expansion (t′ = 30) have been used to de-218

fine the boundaries of region B. The study was repeated using the east and west bound-219
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Figure 1. SuperMAG polar plot indicating the spatial regions A, B and C for which we ob-

tain sub-networks. All data is from stations between 60 − 75◦ magnetic latitude, within the

nightside. The LT boundaries between A, B and C are different for each event and are deter-

mined from Polar VIS images; they are separated by the east and west boundaries of the bulge

at the time of maximum expansion (dashed lines). The magnetic latitude and local time of onset

(again from Polar VIS) for each event, are indicated by the yellow star.

206

207

208

209

210

211

aries of the bulge fifteen normalized minutes before, and after, the maximum expansion220

phase (t′ = 15 and t′ = 45), results are presented in the SI. This gives slight differ-221

ences but the overall results and conclusions are unchanged. The SCW is typically six222

hours of local time in extent (Gjerloev et al., 2007) which corresponds to region B; re-223

gions A and C are westwards and eastwards of the SCW respectively.224

We will present a detailed study of the sub-networks for a single event and then225

will compare it to the average sub-network behaviour seen across all 86 isolated substorms.226

An event was identified which has ≥ 7 magnetometer stations in each of regions A, B227

and C for the duration of the substorm; this occurs on 01−Jan−1999 with onset at 04 :228

52 UT. It had a relatively short expansion phase, 17 minutes, and a thin SCW, extend-229

ing over 4.1 hours of LT at the time of peak expansion (t′ = 30). For the averaged study230

over 86 events we require at least three magnetometers in a spatial region for it’s sub-231

network to be included in the study. For example, a substorm in which there were ≥ 3232

magnetometers in regions A and B, but < 3 in C, will contribute to the average sub-233

networks behaviour within A and B but not within sub-network C. We repeated the en-234

tire analysis with the more restrictive criterion of ≥ 7 magnetometers and found very235

similar results (see SI). One benefit of using network analysis is that we do not require236

a spatially uniform grid of magnetometers, that being said, the condition of having ≥237

3 magnetometers per region gives a mean spatial separation distance (within regions)238

of ∼ 1000km.239

The spatial regions A, B and C are defined such that the sub-networks are always240

in the same local time relative to the SCW but, as the earth rotates, the geomagnetic241

location of the magnetometer stations will vary. This will not affect the properties of the242

computed network provided regions A, B, C continue to be well-sampled with stations.243

However, the number of stations within each region can change. We therefore include244

a normalization to the number of possible connections to define the parameter that we245

will use to quantify the network, the normalized number of connections:246

α(t) =

∑N(t)
i 6=j

∑N(t)
j 6=i Aij

N(t)(N(t)− 1)
(2)

where A is the adjacency matrix and N(t) is the number of active magnetometers.247
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4 Results248
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Figure 2. The normalized number of connections, α(t′, τc), is binned by the lag of maxi-

mal canonical cross-correlation (CCC), |τc|. Each panel stacks vertically (one above the other)

α(t′, τc) versus normalized time, t′, for |τc| ≤ 15. |τc| is indicated by colour (see colour bar).

Panel 1 plots the SuperMAG electrojet index, SME. Panels 2 − 10 plot α for connections within

and between each of the regions A, B and C (identified in Figure 1). The left columns plot a

single event, whereas the right plots the average of 86 events (containing sub-networks with ≥ 3

magnetometers per region). Substorm onset (green dashed line) is at t′ = 0 and the maximum of

the expansion phase (purple dashed line) is at t′ = 30.
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4.1 Observed timings of spatial correlation257

We now present (in figure 2) the directed network for the individual substorm iden-258

tified above (left column), and the average of all 86 selected substorms (right column).259

Substorm evolution is not necessarily linear but the individual substorm is plotted as an260

example to highlight that the multi-event mean is a reasonable average. Having obtained261

the sub-networks for each region (identified in figure 1), we have the normalized num-262

ber of connections, α(t′, τc) (equation 2) within (panels 2−4), or between the regions263

A, B and C (panels 5− 10). Looking at connected magnetometers within each region264

provides timings of the emergence of coherent spatial patterns of correlation in the mag-265

netic field perturbations (at ground level), whilst connections between regions provide266

information on how these patterns are propagating and/or expanding through out the267

substorm; any inter-region dependencies will also be flagged. If all possible magnetome-268

ter connections are present then α = 1. Since the connections between regions (e.g. A→C269

and C→A) are plotted separately (e.g. panel 7 and 8), then if these were fully connected,270

the sum over the two plots would be 1. Hence the range of values for the y-axes for con-271

nections between regions (panels 5-10) are half the size of that within the regions (pan-272

els 2-4).273

As the networks are constructed using the time delay/lag at which the CCC be-274

tween each pair of magnetometer stations is maximal, each connection has an associated275

signed lag, τc. We bin the number of connections (α) into ranges of the magnitude of276

this lag (τc). Connections which are at zero lag have no time delay i.e. τc = 0 (grey),277

and connections with an associated direction of propagation/ expansion, from one mag-278

netometer to another, have a range of delays, that is, lags from 1− 15 minutes (blue-279

red). The sign of the lag indicates a direction of propagation or expansion from one mag-280

netometer location to another; this information is combined with the physical geograph-281

ical locations of the magnetometers to determine if the propagation/expansion is east-282

ward or westward. The connections are separated into different panels for each direc-283

tion and then binned by the magnitude of the lag. For example, between regions A and284

C, panel 7 plots the A→C propagation/expansion, eastward, from region A into region285

C whilst panel 8 plots C→A propagation/expansion, westward, from region C into re-286

gion A. Connections with a lag τc = 0 (indicated in grey) are plotted on both panels287

7 and 8 (A→C and C→A) as they simply indicate instantaneous correlation between re-288

gions A and C, which have no associated direction and thus, by definition the grey bars289

are identical on the two plots.290

Figure 2 stacks the time series of the normalized number of connections, α(t′, τc),291

so that the value of α for each range of | τc | are plotted one above the other for increas-292

ing | τc |. The stacking is such that each independent α(t′, τc) is visible. The envelope293

is then the total (normalized) number of connections over all lags, that is, all | τc |≤294

15. For example, during the individual substorm (left column), we see mostly instanta-295

neous (grey) correlation within A (panel 2) with an additional low level of lagged cor-296

relation later in the substorm. On the other hand within B (panel 3), at the time of peak297

expansion (purple dashed line) the network is made up of ∼ 10% instantaneous corre-298

lation, ∼ 80% with 1 ≤| τc |≤ 5 (fast propagating or expanding) and < 10% of con-299

nections have | τc |≥ 6 (slow expansion or propagation). The plot covers the time in-300

terval −10 ≤ t′ ≤ 50 normalized minutes where the times of onset, peak expansion301

and the 10 minute intervals in-between are indicated with vertical dashed lines. The fig-302

ure presents a summary of time-varying spatial correlation for each sub-network for the303

duration of the substorm. The full networks for the individual substorm are plotted in304

the SI. The SME (SuperMAG electrojet index) for the individual event, and its multi-305

event average, is plotted in panel 1 of figure 2. We can see that although the events are306

on a normalized time-base, the multi-event average is more smooth and responds less307

sharply to onset than the individual event.308
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Prior to onset, the multi-event average shows some spatially coherent connections309

within each of regions A and C (panels 2 and 4). These connections are mostly instan-310

taneous (| τc |= 0, grey shading) or with 1 minute lag (| τc |= 1, dark blue shading).311

Importantly these regions are not correlated with each other, so that the number of A→C312

and C→A connections are small (panels 7 and 8). At onset, in both the individual event313

and the statistical average, (panel 3) we see that the sub-network within region B has314

the most prompt and largest response, that is, increase in spatial correlation. For the315

individual substorm we see a sharp increase in the number of correlated pairs, beginning316

at onset (t′ = 0) and increasing to ∼ 100% (all magnetometers within B are highly cor-317

related) at t′ ∼ 15. Likewise, the multi-event average number of correlated magnetome-318

ter pairs within the B sub-network begins to increase at onset, but it is smoother and319

reaches a peak slightly later than in the individual event; in this case, correlation max-320

imizes with ∼ 60% connectivity at t′ ∼ 25. The January substorm onset is mainly char-321

acterized by fast propagating (0−6 minutes lag) connections whilst in the multi-event322

mean sub-network ∼ 80% of connections are propagating (non-zero peak lag) through-323

out. This is consistent with a pattern that is both coherent and propagating and/or ex-324

panding. The timings of region B growth are consistent across the majority of substorms325

observed.326

About 10 normalized minutes after onset we can see in panel 6 westward propa-327

gation and/or expansion from region B (around onset) into region A (westward of on-328

set), B→A. This coincides with an increase in spatial correlation within region A (panel329

2). For both the individual and the multi-event average, the B→A time series (panel 6),330

that is, the relative increase in the number of connections at different lags, resembles that331

of the network located wholly within region B (panel 3), except that it occurs ∼ 10 nor-332

malized minutes later and has about half the magnitude. Within region A (panel 2), ∼333

50% of magnetometers become highly correlated at 20 < t′ < 30. For the individual334

substorm most of the connections between magnetometers are instantaneous, but for the335

multi-event average ∼ 2
3 of the increase in the number of connections is at non-zero lag.336

We have found some variation between individual substorms as to how spatial correla-337

tion between magnetometers within region A develops from −10 ≤ t′ ≤ 50, with some338

substorms having no obvious response to onset. The A→B (panel 5) propagation and/or339

expansion develops on similar timescales to B →A (panel 6) but there are significantly340

fewer connections (20−30% of magnetometers correlated at peak, t′ = 30) within the341

multi-event average, with ∼ 1
3 of these connections being instantaneous (zero lag, no342

direction).343

The sub-network for region C (panel 4, east of the SCW) has the smallest response344

to substorm onset of any region. The January substorm remains moderately connected345

(∼ 23%) from before onset until long after peak expansion. The multi-event average be-346

gins to increase at 10 < t′ < 20 and the region is maximally correlated after peak ex-347

pansion, t′ > 30 with ∼ 20% of magnetometer pairs being connected; this pattern of348

correlation is consistent long into the recovery phase. This is consistent with many of349

the individual substorms showing little/no response to onset. In panel 9 we see that re-350

gion B becomes correlated with region C with eastwards propagation and/or expansion351

(B→C) ∼ 10−20 normalized minutes after onset, peaking with ∼ 20% magnetometer352

pairs correlated at t′ > 30. In panel 10, we can see that for the individual event < 10%353

of magnetometers are correlated from C→B, with this small increase only occurring ∼354

25 normalized minutes after onset. Correlation increases by ∼ 15% for the multi-event355

average between t′ ∼ 10 and t′ ∼ 30. Thus the response within region C simply tracks356

that of the propagation or expansion from B → C, and any propagation from C → B357

occurs subsequently.358

Finally, ∼ 10− 20 normalized minutes after onset, in panels 7 and 8 we see cor-359

relation growing relatively slowly between regions A and C (west and east of the onset360

location, respectively), reaching a maximum level of connectedness at t′ ∼ 40, long af-361
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ter the time of peak expansion. There is slightly more eastward propagation (A→C, >362

20% of magnetometers) than westward propagation (C→A, ∼ 10% and ∼ 18% of mag-363

netometer pairs for the individual and multi-event average, respectively). Again, the lagged364

correlation originating in C is very small (and mostly instantaneous) for the individual365

event.366

4.2 Interpretation367

If we can interpret coherent patterns of spatial correlation across the distributed368

SuperMAG magnetometers as the emergence of current systems, the above time-dependent369

network provides an evolution sequence, with timings, for the substorm current system370

in the nightside. Our analysis then provides a quantitative measure of spatial coherence371

as well as the time scales on which evolution occurs. By separating the nightside into372

three regions we have attempted to isolate the components that have been proposed. To373

use the terminology of Kamide and Kokubun (1996) we have: (A) eastward electrojet;374

(B) substorm unloading component (SCW) and (C) westward electrojet. Whereas B is375

associated with the substorm current wedge, or DP1 perturbations, A and C can be re-376

lated to the general magnetospheric convective system, DP2 (Nishida, 1968), which is377

enhanced during substorm growth and expansion phases (Milan et al., 2017). To sum-378

marize the above results we identify key time ranges, before and after onset: 0 ≤ t′1 <379

10, 10 ≤ t′2 < 20, 20 ≤ t′3 < 30 and t′4 ≥ 30 in terms of normalized time, t′. Relating380

these intervals to substorm evolution t′1 is following onset, t′2 is expansion phase, t′3 is381

near substorm peak and t′4 is the early recovery phase. The timings are:382

• Before onset, the pre- and post-midnight regions A and C each have a relatively383

weak coherent pattern consistent with convection (DP2); notably A and C are not384

coherent with each other.385

• In t′1 we first see the formation of a substorm current wedge (SCW/DP1) around386

onset (correlation within B) which approaches maximum in t′2.387

• In t′2 there is westward propagation and/or expansion of the SCW west towards388

the pre-midnight region (A). We see connections (B→A) and at the same time a389

signature of a coherent current system within region A (correlation within A). This390

is shortly followed by weaker correlation from A→B, indicating that the entire A-391

B system is now correlated. These all approach a maximum at t′3.392

• A weaker signal of eastward propagation and/or expansion of the SCW towards393

the post-midnight region starts in t′2, and reaches its maximum in t′4. We see con-394

nections (B→C) and on a similar timescale a signature of a coherent current sys-395

tem within region C (correlation within C), with additional weaker correlation from396

C→B. The correlation in region C is relatively low.397

• The regions eastward and westward of onset (A and C) each have a coherent pat-398

tern consistent with enhanced magnetospheric convection (DP2). Later in the sub-399

storm there is coherence between regions A and C, beginning well after onset, in400

t′2, and reaching maximum correlation in t′4, that is, only after region B has be-401

come correlated with all other regions. This can either reflect direct correlation402

between A and C, or could simply imply that both A and C are correlated with403

B.404

We can then consider what support these results provide for proposed models for405

substorm current systems, specifically, models with a single westward electrojet segment406

(Kamide & Kokubun, 1996; McPherron et al., 1973), a westward and, a lower (but still407

in the auroral zones) latitude eastward electrojet segment (Ritter & Lühr, 2008; Sergeev408

et al., 2014, 2011); two unconnected westward electrojet segments pre- and post-midnight409

(Gjerloev & Hoffman, 2014; Rostoker, 1996) and finally many small individual segments410

(Liu et al., 2018). Importantly, any method for quantifying spatial correlation cannot411

distinguish between direct correlation (here, A→C) and indirect correlation (here, A→B→C);412
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this indirect correlation may enhance the number of A→C connections relative to B→C.413

Therefore our results are not inconsistent with multiple separate current systems pro-414

vided that they are either spatially correlated with each other, or on spatial scales smaller415

than that of the magnetometer spacing.416

The coherent patterns of eastward and westward expansion are in agreement with417

previous work using synchronous space and ground based magnetometers (Nagai, 1982,418

1991). However, we have not found definitive support for two, or more, distinct and un-419

correlated substorm current systems. A lag, | τc |> 0, for B→C connections, implies420

that C is delayed with respect to B, consistent with a propagation from B to C. Inter-421

preting these results in terms of current components suggest two scenarios for this prop-422

agation: i) a single current segment which is expanding from B to C; or, ii) a current seg-423

ment in B and another in C, where the segment in C is correlated with that in B but424

is developing with some delay. There is no interpretation of our results which would sug-425

gest a scenario where regions B and C are uncorrelated, independent current systems.426

If they are associated entirely with general magnetospheric convection (DP2 sys-427

tem), the pre- and post- midnight (A and C) are directly-driven by the solar wind and428

must enhance on similar time-scales, although the magnitudes may differ (Kamide & Kokubun,429

1996). We have found that pre-onset, the regions A and C each have coherent, but rel-430

atively small, signatures of correlation with little CCC between them. Post-onset, in both431

the individual event and the average over 86 substorms, the long range east to west (A→C)432

correlation patterns only emerge after the growth of the SCW (region B). The growth433

of spatially coherent patterns appears first in B (the SCW, at onset) followed by A (with434

correlation between B and A) and later, in C. This suggests that following onset, A and435

C are not solely attributable to enhanced convection and the presence of contempora-436

neous B → C and B→ A connections suggests that there may be a combination of con-437

tributions from convection enhancement and SCW expansion. Importantly, this does not438

require that a current segment in A expands or propagates into C.439

Finally, if instead of a large scale SCW there were only many small, uncorrelated,440

individual segments (Liu et al., 2018) we would not expect to find the long-range cor-441

relations (A to C) seen here (also SI, figure 1). Since we calculate CCC on minute res-442

olution time series, each connection in the network is derived from a 128 minute time443

window. Thus we cannot resolve short-timescale events such as a large number of small444

wedgelets each associated with a bursty bulk flow (BBF) in the plasma sheet which have445

lifetimes of some 10 min. In addition, we cannot resolve structures that are on smaller446

spatial scales than the inter-magnetometer spacing. If multiple wedgelets are present,447

their spatial aggregate would give an overall large-scale magnetic amplitude signature448

mainly at the edges of the region containing the wedgelets, regardless of whether or not449

the wedglets are spatio-temporally correlated. Here, both spatial and temporal informa-450

tion is used to obtain the cross-correlation so that temporally uncorrelated wedgelets would451

give no spatially coherent signature of cross correlation at all, whereas if the same wedgelets452

were temporally correlated, we would find a signature of spatial cross-correlation.453

Potential limitations to the technique include sensitivity to the location of the east454

and west bulge boundaries, which are static and therefore may not fully represent fast455

changes in the time-varying current system. There may also be a spatial coarse-graining456

effect due to the geographic location of the finite number of magnetometers; there are457

few near the eastward SWC boundary during the January substorm. To test this we present458

the same plots for this event, but with the east and west boundaries of the bulge at t′ =459

15 and t′ = 45 in the SI. These show little change from the results shown in Figure 2.460

Additionally, the detailed network maps of the individual event, for the times represented461

by the vertical dashed lines in Figure 2, onset-peak, are provided in the SI. They high-462

light the importance of the spatial coverage and geographical locations of the highly cor-463

related magnetometer pairs.464
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Also, in the analysis and by the organization of data into three regions, A, B, C,465

we are quantifying the coherence over these regions. This is over a range in both lati-466

tude (60− 75◦) and local time (typically region B is ∼ 6 hrs LT). The westward elec-467

trojet around onset (B) may not cover all latitudes but our analysis technique is mainly468

addressing the various SCW models which differ in their local time distribution.469

5 Conclusions470

We used the full set of SuperMAG ground-based magnetometer observations of iso-471

lated substorms to quantify the time evolution of patterns of spatial correlation. If the472

observed pattern of spatial correlation between magnetometer observations captures iono-473

spheric current patterns then we can directly test different models for substorm iono-474

spheric current systems. We have obtained the first directed networks for isolated sub-475

storms. Each connection in the network indicates when the maximum canonical cross-476

correlation CCC between the vector magnetic field perturbations seen at each pair of mag-477

netometers exceeds an event and station specific threshold. The maximum of the CCC478

corresponding to each connection in the network can occur at a non-zero time lag. The479

resulting directed network then contains information, not only on the formation of co-480

herent patterns seen by multiple magnetometers, but also on the propagation and/or ex-481

pansion of these spatially coherent structures.482

To gain insight on the ionospheric current system during a substorm, we obtained483

specific time-varying sub-networks from the data which isolate specific physical regions.484

These regions are west (A), within (B) and east (C) of the bulge boundaries for each sub-485

storm (obtained from polar VIS images at the time of peak expansion). We presented486

both a study of an individual event, which has at least seven magnetometers in each of487

these regions for the duration of the substorm, as well as the average of the network prop-488

erties of 86 substorm events. If the observed pattern of spatial correlation between mag-489

netometer observations captures ionospheric current patterns, we find the following se-490

quence of events in terms of key time ranges after onset: 0 ≤ t′1 < 10, 10 ≤ t′2 < 20,491

20 ≤ t′3 < 30 and t′4 ≥ 30 (t′ is normalized time (Gjerloev et al., 2007)):492

• Pre- onset, the pre- and post-midnight regions A and C each have a relatively weak493

coherent pattern consistent with general magnetospheric convection (DP2) and494

are not coherent with each other.495

• A dominant substorm current wedge (SCW) forming around the onset location496

(within region B) at the time of onset, t1, which reaches maximum spatial corre-497

lation at t2, half way through the expansion phase.498

• This is followed by a westward expansion of this SCW (starting at t2, with peak499

at t3) contemporaneous to and coherent with a current system in the pre-midnight500

region (within A).501

• An additional weaker eastward expansion of the SCW (starting slowly at t2 with502

peak at t4). The signal of a self-contained current post-midnight (region C) is rel-503

atively weaker and occurs late in the substorm. The enhancement of C is delayed504

with respect to that of A.505

• Following the SCW expansion, A and C are coherent with each other, but at the506

same time are coherent with the SCW. This is consistent with a combination of507

convection and expansion of the SCW.508

These conclusions are drawn from the averaged network over 86 isolated substorms.509

Although the overall spatio-temporal timings revealed by this network analysis are rea-510

sonably consistent between individual events and the 86 event average for the formation511

of a SCW around onset (B) and it’s expansion both east (B→C) and west (B→A), the512

exact timings of the current system evolution varies. Variability between events could513

be intrinsic or could relate to the observing conditions, such as differing magnetometer514
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spatial coverage or the static choice of location for region boundaries. Future work will515

quantify event-by-event variability across multiple events and extend the analysis to mul-516

tiple, compound events. So far in our analysis we have not utilized the direction of the517

(vector) maximal CCC. In principle this could resolve the direction of the electojet (east-518

ward/westward).519
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