20 research outputs found

    Adding rotation to translation: percepts and illusions

    Get PDF
    This study investigated how the perception of a translating object is affected by rotation. Observers were asked to judge the motion and trajectory of objects that rotated around their centroid while linearly translating. The expected percept, consistent with the actual dynamics used to generate the movie sequences, is that of a translating and rotating object, akin to a tumbling rugby ball. Observers, however, do not always report this and, under certain circumstances, perceive the object to translate on an illusory curved trajectory, similar to a car driving on a curved road. The prevalence of veridical versus nonveridical percepts depends on a number of factors. First, if the object's orientation remains within a limited range relative to the axis of translation, the illusory, curved percept dominates. If the orientation, at any point of the movie sequence, differs sufficiently from the axis of translation, the percept switches to linear translation with rotation. The angle at which the switch occurs is dependent upon a number of factors that relate to an object's elongation and, with it, the prominence of its orientation. For an ellipse with an aspect ratio of 3, the switch occurs at approximately 45°. Higher aspect ratios increase the range; lower ratios decrease it. This applies similarly to rectangular shapes. A line is more likely to be perceived on a curved trajectory than an elongated rectangle, which, in turn, is more likely seen on a curved path than a square. This is largely independent of rotational and translational speeds. Measuring perceived directions of motion at different instants in time allows the shape of the perceived illusory curved path to be extrapolated. This results in a trajectory that is independent of object size and corresponds closely to the actual object orientation at different points during the movie sequence. The results provide evidence for a perceptual transition from an illusory curved trajectory to a veridical linear trajectory (with rotation) for the same object. Both are consistent with special real-world cases such as objects rotating around a centre outside of the object so that their orientation remains tangent to the trajectory (cheetahs running along a curve, sailboats) or objects tumbling along simple trajectories (a monkey spinning in air, spinning cars on ice). In certain cases, the former is an illusion. </jats:p

    Set-size effects for sampled shapes: experiments and model

    Get PDF
    The location of imperfections or heterogeneities in shapes and contours often correlates with points of interest in a visual scene. Investigating the detection of such heterogeneities provides clues as to the mechanisms processing simple shapes and contours. We determined set-size effects (e.g., sensitivity to single target detection as distractor number increases) for sampled contours to investigate how the visual system combines information across space. Stimuli were shapes sampled by oriented Gabor patches: circles and high-amplitude RF4 and RF8 radial frequency patterns with Gabor orientations tangential to the shape. Subjects had to detect a deviation in orientation of one element (“heterogeneity”). Heterogeneity detection sensitivity was measured for a range (7–40) of equally spaced (2.3–0.4°) elements. In a second condition, performance was measured when elements sampled a part of the shapes. We either varied partial contour length for a fixed (7) set-size, co-varying inter-element spacing, or set-size for a fixed spacing (0.7°), co-varying partial contour length. Surprisingly, set-size effects (poorer performance with more elements) are rarely seen. Set-size effects only occur for shapes containing concavities (RF4 and RF8) and when spacing is fixed. When elements are regularly spaced, detection performance improves with set-size for all shapes. When set-size is fixed and spacing varied, performance improves with decreasing spacing. Thus, when an increase in set-size and a decrease in spacing co-occur, the effect of spacing dominates, suggesting that inter-element spacing, not set-size, is the critical parameter for sampled shapes. We propose a model for the processing of simple shapes based on V4 curvature units with late noise, incorporating spacing, average shape curvature, and the number of segments with constant sign of curvature contained in the shape, which accurately accounts for our experimental results, making testable predictions for a variety of simple shapes

    The ground beetle tribe platynini bonelli, 1810 (Coleoptera, carabidae) in the southern levant: dichotomous and interactive identification tools, ecological traits, and distribution

    Get PDF
    The carabids of the tribe Platynini from the southern Levant (Egypt: Sinai Peninsula, Israel, Jordan) and adjacent regions of Egypt, Lebanon, Syria, Iraq, and Saudi Arabia are reviewed in terms of species tax-onomy, ecological, distributional traits, and conservation biology. In addition to a classical dichotomous identification key to the 14 species of the region, identification tools are made freely available via the Xper3 knowledge database “Platynini, southern Levant”. Besides an interactive identification key, a matrix with character states for the species and single access identification keys are available. A database includ-ing all available records from the southern Levant is also provided. First faunistic records are recorded for Anchomenus dorsalis infuscatus from Sinai (Egypt), Olisthopus fuscatus from Lebanon and Iraq, and for O. glabricollis from Iraq. Threatened species are discussed, also with regard to the reasons of their decline. The majority of species lives in wetlands, especially on the shore of winter ponds and streams, which have been extremely degraded in the last decades

    Properties of static and dynamic angle discrimination are different

    No full text

    Judging the shape of moving objects: discriminating dynamic angles

    No full text

    Anisotropy in judging the absolute direction of motion

    Get PDF
    AbstractThe angular dependence of precision measurements is well established as the oblique effect in motion perception. Recently, it has been shown that the visual system also exhibits anisotropic behaviour with respect to accuracy of the absolute direction of motion of random dot fields. This study aimed to investigate whether this angular dependent, directional bias is a general phenomenon of motion perception. Our results demonstrate, for single translating tilted lines viewed foveally, an extraordinary illusion with perceptual deviations of up to 35° from veridical. Not only is the magnitude of these deviations substantially larger than that for random dots, but the general pattern of the illusion is also different from that found for dot fields. Significant differences in the bias, as a function of line tilt and line length, suggest that the illusion does not result from fixed inaccuracies of the visual system in the computation of direction of motion. Potential sources for these large biases are motion integration mechanisms. These were also found to be anisotropic. The anisotropic nature and the surprisingly large magnitude of the effect make it a necessary consideration in analyses of motion experiments and in modelling studies
    corecore