106 research outputs found

    miR-132, an experience-dependent microRNA, is essential for visual cortex plasticity

    Get PDF
    Using quantitative analyses, we identified microRNAs (miRNAs) that were abundantly expressed in visual cortex and that responded to dark rearing and/or monocular deprivation. The most substantially altered miRNA, miR-132, was rapidly upregulated after eye opening and was delayed by dark rearing. In vivo inhibition of miR-132 in mice prevented ocular dominance plasticity in identified neurons following monocular deprivation and affected the maturation of dendritic spines, demonstrating its critical role in the plasticity of visual cortex circuits.National Eye Institute (Ruth L. Kirschstein Postdoctoral Fellowship 1F32EY020066-01)Simons Foundation (Postdoctoral Fellowship)National Institutes of Health (U.S.) (EY017098)National Institutes of Health (U.S.) (EY007023

    A lionfish (Pterois miles) invasion has begun in the Mediterranean Sea

    Get PDF
    Until now, few sightings of the alien lionfish Pterois miles have been reported in the Mediterranean and it was questionable whether the species could invade this region like it has in the western Atlantic. Here, we present evidence from divers and fishermen that lionfish have recently increased in abundance and within a year colonised almost the entire south eastern coast of Cyprus, likely due to sea surface warming. At least 23 different fish are reported of which 6 were removed. Groups of lionfish exhibiting mating behaviour have been noted for the first time in the Mediterranean. Managers need this information and should alert stakeholders to the potential ecological and socio-economic impacts that may arise from a lionfish invasion. Actions could involve incentives to engage divers and fishermen in lionfish removal programmes, as these have worked well at shallow depths in the Caribbean. Given that the Suez Canal has recently been widened and deepened, measures will need to be put in place to help prevent further invasion

    PirB regulates a structural substrate for cortical plasticity

    Full text link
    Experience-driven circuit changes underlie learning and memory. Monocular deprivation (MD) engages synaptic mechanisms of ocular dominance (OD) plasticity and generates robust increases in dendritic spine density on L5 pyramidal neurons. Here we show that the paired immunoglobulin-like receptor B (PirB) negatively regulates spine density, as well as the threshold for adult OD plasticity. In PirB(-/-) mice, spine density and stability are significantly greater than WT, associated with higher-frequency miniature synaptic currents, larger long-term potentiation, and deficient long-term depression. Although MD generates the expected increase in spine density in WT, in PirB(-/-) this increase is occluded. In adult PirB(-/-), OD plasticity is larger and more rapid than in WT, consistent with the maintenance of elevated spine density. Thus, PirB normally regulates spine and excitatory synapse density and consequently the threshold for new learning throughout life

    Molecular Identification of Atlantic Bluefin Tuna (Thunnus thynnus, Scombridae) Larvae and Development of a DNA Character-Based Identification Key for Mediterranean Scombrids

    Get PDF
    The Atlantic bluefin tuna, Thunnus thynnus, is a commercially important species that has been severely over-exploited in the recent past. Although the eastern Atlantic and Mediterranean stock is now showing signs of recovery, its current status remains very uncertain and as a consequence their recovery is dependent upon severe management informed by rigorous scientific research. Monitoring of early life history stages can inform decision makers about the health of the species based upon recruitment and survival rates. Misidentification of fish larvae and eggs can lead to inaccurate estimates of stock biomass and productivity which can trigger demands for increased quotas and unsound management conclusions. Herein we used a molecular approach employing mitochondrial and nuclear genes (CO1 and ITS1, respectively) to identify larvae (n = 188) collected from three spawning areas in the Mediterranean Sea by different institutions working with a regional fisheries management organization. Several techniques were used to analyze the genetic sequences (sequence alignments using search algorithms, neighbour joining trees, and a genetic character-based identification key) and an extensive comparison of the results is presented. During this process various inaccuracies in related publications and online databases were uncovered. Our results reveal important differences in the accuracy of the taxonomic identifications carried out by different ichthyoplanktologists following morphology- based methods. While less than half of larvae provided were bluefin tuna, other dominant taxa were bullet tuna (Auxis rochei), albacore (Thunnus alalunga) and little tunny (Euthynnus alletteratus). We advocate an expansion of expertise for a new generation of morphology-based taxonomists, increased dialogue between morphology-based and molecular taxonomists and increased scrutiny of public sequence databases.VersiĂłn del editor4,411

    Cre-Dependent Expression of Multiple Transgenes in Isolated Neurons of the Adult Forebrain

    Get PDF
    Background: Transgenic mice with mosaic, Golgi-staining-like expression of enhanced green fluorescent protein (EGFP) have been very useful in studying the dynamics of neuronal structure and function. In order to further investigate the molecular events regulating structural plasticity, it would be useful to express multiple proteins in the same sparse neurons, allowing co-expression of functional proteins or co-labeling of subcellular compartments with other fluorescent proteins. However, it has been difficult to obtain reproducible expression in the same subset of neurons for direct comparison of neurons expressing different functional proteins. Principal Findings: Here we describe a Cre-transgenic line that allows reproducible expression of transgenic proteins of choice in a small number of neurons of the adult cortex, hippocampus, striatum, olfactory bulb, subiculum, hypothalamus, superior colliculus and amygdala. We show that using these Cre-transgenic mice, multiple Cre-dependent transgenes can be expressed together in the same isolated neurons. We also describe a Cre-dependent transgenic line expressing a membrane associated EGFP (EGFP-F). Crossed with the Cre-transgenic line, EGFP-F expression starts in the adolescent forebrain, is present in dendrites, dendritic protrusions, axons and boutons and is strong enough for acute or chronic in vivo imaging. Significance: This triple transgenic approach will aid the morphological and functional characterization of neurons in various Cre-dependent transgenic mice

    Spine neck plasticity regulates compartmentalization of synapses

    Get PDF
    Dendritic spines have been proposed to transform synaptic signals through chemical and electrical compartmentalization. However, the quantitative contribution of spine morphology to synapse compartmentalization and its dynamic regulation are still poorly understood. We used time-lapse super-resolution stimulated emission depletion (STED) imaging in combination with fluorescence recovery after photobleaching (FRAP) measurements, two-photon glutamate uncaging, electrophysiology and simulations to investigate the dynamic link between nanoscale anatomy and compartmentalization in live spines of CA1 neurons in mouse brain slices. We report a diversity of spine morphologies that argues against common categorization schemes and establish a close link between compartmentalization and spine morphology, wherein spine neck width is the most critical morphological parameter. We demonstrate that spine necks are plastic structures that become wider and shorter after long-term potentiation. These morphological changes are predicted to lead to a substantial drop in spine head excitatory postsynaptic potential (EPSP) while preserving overall biochemical compartmentalization

    The Actin Binding Domain of βI-Spectrin Regulates the Morphological and Functional Dynamics of Dendritic Spines

    Get PDF
    Actin microfilaments regulate the size, shape and mobility of dendritic spines and are in turn regulated by actin binding proteins and small GTPases. The βI isoform of spectrin, a protein that links the actin cytoskeleton to membrane proteins, is present in spines. To understand its function, we expressed its actin-binding domain (ABD) in CA1 pyramidal neurons in hippocampal slice cultures. The ABD of βI-spectrin bundled actin in principal dendrites and was concentrated in dendritic spines, where it significantly increased the size of the spine head. These effects were not observed after expression of homologous ABDs of utrophin, dystrophin, and α-actinin. Treatment of slice cultures with latrunculin-B significantly decreased spine head size and decreased actin-GFP fluorescence in cells expressing the ABD of α-actinin, but not the ABD of βI-spectrin, suggesting that its presence inhibits actin depolymerization. We also observed an increase in the area of GFP-tagged PSD-95 in the spine head and an increase in the amplitude of mEPSCs at spines expressing the ABD of βI-spectrin. The effects of the βI-spectrin ABD on spine size and mEPSC amplitude were mimicked by expressing wild-type Rac3, a small GTPase that co-immunoprecipitates specifically with βI-spectrin in extracts of cultured cortical neurons. Spine size was normal in cells co-expressing a dominant negative Rac3 construct with the βI-spectrin ABD. We suggest that βI-spectrin is a synaptic protein that can modulate both the morphological and functional dynamics of dendritic spines, perhaps via interaction with actin and Rac3

    Gene Expression in Human Hippocampus from Cocaine Abusers Identifies Genes which Regulate Extracellular Matrix Remodeling

    Get PDF
    The chronic effects of cocaine abuse on brain structure and function are blamed for the inability of most addicts to remain abstinent. Part of the difficulty in preventing relapse is the persisting memory of the intense euphoria or cocaine “rush”. Most abused drugs and alcohol induce neuroplastic changes in brain pathways subserving emotion and cognition. Such changes may account for the consolidation and structural reconfiguration of synaptic connections with exposure to cocaine. Adaptive hippocampal plasticity could be related to specific patterns of gene expression with chronic cocaine abuse. Here, we compare gene expression profiles in the human hippocampus from cocaine addicts and age-matched drug-free control subjects. Cocaine abusers had 151 gene transcripts upregulated, while 91 gene transcripts were downregulated. Topping the list of cocaine-regulated transcripts was RECK in the human hippocampus (FC = 2.0; p<0.05). RECK is a membrane-anchored MMP inhibitor that is implicated in the coordinated regulation of extracellular matrix integrity and angiogenesis. In keeping with elevated RECK expression, active MMP9 protein levels were decreased in the hippocampus from cocaine abusers. Pathway analysis identified other genes regulated by cocaine that code for proteins involved in the remodeling of the cytomatrix and synaptic connections and the inhibition of blood vessel proliferation (PCDH8, LAMB1, ITGB6, CTGF and EphB4). The observed microarray phenotype in the human hippocampus identified RECK and other region-specific genes that may promote long-lasting structural changes with repeated cocaine abuse. Extracellular matrix remodeling in the hippocampus may be a persisting effect of chronic abuse that contributes to the compulsive and relapsing nature of cocaine addiction
    • …
    corecore