47 research outputs found
Quantum (1+1) extended Galilei algebras: from Lie bialgebras to quantum R-matrices and integrable systems
The Lie bialgebras of the (1+1) extended Galilei algebra are obtained and
classified into four multiparametric families. Their quantum deformations are
obtained, together with the corresponding deformed Casimir operators. For the
coboundary cases quantum universal R-matrices are also given. Applications of
the quantum extended Galilei algebras to classical integrable systems are
explicitly developed.Comment: 16 pages, LaTeX. A detailed description of the construction of
integrable systems is carried ou
Lie Bialgebra Structures for Centrally Extended Two- Dimensional Galilei Algebra and their Lie-Poisson Counterparts
All bialgebra structures for centrally extended Galilei algebra are
classified. The corresponding Lie-Poisson structures on centrally extended
Galilei group are found.Comment: Eq. (11) changed, 15 pages, LaTeX fil
(1+1) Schrodinger Lie bialgebras and their Poisson-Lie groups
All Lie bialgebra structures for the (1+1)-dimensional centrally extended
Schrodinger algebra are explicitly derived and proved to be of the coboundary
type. Therefore, since all of them come from a classical r-matrix, the complete
family of Schrodinger Poisson-Lie groups can be deduced by means of the
Sklyanin bracket. All possible embeddings of the harmonic oscillator, extended
Galilei and gl(2) Lie bialgebras within the Schrodinger classification are
studied. As an application, new quantum (Hopf algebra) deformations of the
Schrodinger algebra, including their corresponding quantum universal
R-matrices, are constructed.Comment: 25 pages, LaTeX. Possible applications in relation with integrable
systems are pointed; new references adde
Theory of Luminescence Spectra of High-Density Electron-Hole Systems: Crossover from Excitonic Bose-Einstein Condenstation to Electron-Hole BCS State
We present a unified theory of luminescence spectra for highly excited
semiconductors, which is applicable both to the electron-hole BCS state and to
the exciton Bose-Einstein condensate. The crossover behavior between
electron-hole BCS state and exciton Bose-Einstein condensate clearly manifests
itself in the calculated luminescence spectra. The analysis is based on the
Bethe-Salpeter equation combined with the generalized
random-phase-approximation, which enables us to consider the multiple Coulomb
scattering and the quantum fluctuation associated with the center-of-mass
motion of electron-hole pairs. In the crossover regime, the calculated spectra
are essentially different from results obtained by the BCS-like mean-field
theory and the interacting Boson model. In particular, it is found that the
broad spectrum, arising from the recombination of electron-hole BCS state,
splits into the P- and P_2-luminescence bands with decreasing the particle
density. The dependence of these bands on the carrier density is in good
agreement with experiments for highly excited semiconductors.Comment: 9 pages, 4 figures, To appear in Solid State Communication
Endosperm development in Brachypodium distachyon
Grain development and its evolution in grasses remains poorly understood, despite cereals being our most important source of food. The grain, for which many grass species have been domesticated, is a single-seeded fruit with prominent and persistent endosperm. Brachypodium distachyon, a small wild grass, is being posited as a new model system for the temperate small grain cereals, but little is known about its endosperm development and how this compares with that of the domesticated cereals. A cellular and molecular map of domains within the developing Brachypodium endosperm is constructed. This provides the first detailed description of grain development in Brachypodium for the reference strain, Bd21, that will be useful for future genetic and comparative studies. Development of Brachypodium grains is compared with that of wheat. Notably, the aleurone is not regionally differentiated as in wheat, suggesting that the modified aleurone region may be a feature of only a subset of cereals. Also, the central endosperm and the nucellar epidermis contain unusually prominent cell walls that may act as a storage material. The composition of these cell walls is more closely related to those of barley and oats than to those of wheat. Therefore, although endosperm development is broadly similar to that of temperate small grain cereals, there are significant differences that may reflect its phylogenetic position between the Triticeae and rice
A comprehensive overview of grain development in Brachypodium distachyon variety Bd21
A detailed and comprehensive understanding of seed reserve accumulation is of great importance for agriculture and crop improvement strategies. This work is part of a research programme aimed at using Brachypodium distachyon as a model plant for cereal grain development and filling. The focus was on the Bd21-3 accession, gathering morphological, cytological, and biochemical data, including protein, lipid, sugars, starch, and cell-wall analyses during grain development. This study highlighted the existence of three main developmental phases in Brachypodium caryopsis and provided an extensive description of Brachypodium grain development. In the first phase, namely morphogenesis, the embryo developed rapidly reaching its final morphology about 18 d after fertilization (DAF). Over the same period the endosperm enlarged, finally to occupy 80% of the grain volume. During the maturation phase, carbohydrates were continuously stored, mainly in the endosperm, switching from sucrose to starch accumulation. Large quantities of β-glucans accumulated in the endosperm with local variations in the deposition pattern. Interestingly, new β-glucans were found in Brachypodium compared with other cereals. Proteins (i.e. globulins and prolamins) were found in large quantities from 15 DAF onwards. These proteins were stored in two different sub-cellular structures which are also found in rice, but are unusual for the Pooideae. During the late stage of development, the grain desiccated while the dry matter remained fairly constant. Brachypodium exhibits some significant differences with domesticated cereals. Beta-glucan accumulates during grain development and this cell wall polysaccharide is the main storage carbohydrate at the expense of starch
Identification and Characterization of NF-Y Transcription Factor Families in the Monocot Model Plant Brachypodium distachyon
BACKGROUND: Nuclear Factor Y (NF-Y) is a heterotrimeric transcription factor composed of NF-YA, NF-YB and NF-YC proteins. Using the dicot plant model system Arabidopsis thaliana (Arabidopsis), NF-Y were previously shown to control a variety of agronomically important traits, including drought tolerance, flowering time, and seed development. The aim of the current research was to identify and characterize NF-Y families in the emerging monocot model plant Brachypodium distachyon (Brachypodium) with the long term goal of assisting in the translation of known dicot NF-Y functions to the grasses. METHODOLOGY/PRINCIPAL FINDINGS: We identified, annotated, and further characterized 7 NF-YA, 17 NF-YB, and 12 NF-YC proteins in Brachypodium (BdNF-Y). By examining phylogenetic relationships, orthology predictions, and tissue-specific expression patterns for all 36 BdNF-Y, we proposed numerous examples of likely functional conservation between dicots and monocots. To test one of these orthology predictions, we demonstrated that a BdNF-YB with predicted orthology to Arabidopsis floral-promoting NF-Y proteins can rescue a late flowering Arabidopsis mutant. CONCLUSIONS/SIGNIFICANCE: The Brachypodium genome encodes a similar complement of NF-Y to other sequenced angiosperms. Information regarding NF-Y phylogenetic relationships, predicted orthologies, and expression patterns can facilitate their study in the grasses. The current data serves as an entry point for translating many NF-Y functions from dicots to the genetically tractable monocot model system Brachypodium. In turn, studies of NF-Y function in Brachypodium promise to be more readily translatable to the agriculturally important grasses
Identification, characterization, and gene expression analysis of nucleotide binding site (NB)-type resistance gene homologues in switchgrass
Abstract
Background
Switchgrass (Panicum virgatum L.) is a warm-season perennial grass that can be used as a second generation bioenergy crop. However, foliar fungal pathogens, like switchgrass rust, have the potential to significantly reduce switchgrass biomass yield. Despite its importance as a prominent bioenergy crop, a genome-wide comprehensive analysis of NB-LRR disease resistance genes has yet to be performed in switchgrass.
Results
In this study, we used a homology-based computational approach to identify 1011 potential NB-LRR resistance gene homologs (RGHs) in the switchgrass genome (v 1.1). In addition, we identified 40 RGHs that potentially contain unique domains including major sperm protein domain, jacalin-like binding domain, calmodulin-like binding, and thioredoxin. RNA-sequencing analysis of leaf tissue from ‘Alamo’, a rust-resistant switchgrass cultivar, and ‘Dacotah’, a rust-susceptible switchgrass cultivar, identified 2634 high quality variants in the RGHs between the two cultivars. RNA-sequencing data from field-grown cultivar ‘Summer’ plants indicated that the expression of some of these RGHs was developmentally regulated.
Conclusions
Our results provide useful insight into the molecular structure, distribution, and expression patterns of members of the NB-LRR gene family in switchgrass. These results also provide a foundation for future work aimed at elucidating the molecular mechanisms underlying disease resistance in this important bioenergy crop
Brachypodium distachyon as a model for defining the allergen potential of non-prolamin proteins
Epitope databases and the protein sequences of published plant genomes are suitable to identify some of the proteins causing food allergies and sensitivities. Brachypodium distachyon, a diploid wild grass with a sequenced genome and low prolamin content, is the closest relative of the allergen cereals, such as wheat or barley. Using the Brachypodium genome sequence, a workflow has been developed to identify potentially harmful proteins which may cause either celiac disease or wheat allergy-related symptoms. Seed tissue-specific expression of the potential allergens has been determined, and intact epitopes following an in silico digestion with several endopeptidases have been identified. Molecular function of allergen proteins has been evaluated using Gene Ontology terms. Biologically overrepresented proteins and potentially allergen protein families have been identified. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10142-012-0294-z) contains supplementary material, which is available to authorized users