1,072 research outputs found
Economic Impacts of Soybean Rust on the US Soybean Sector
The spread of Asian Soybean Rust (ASR) represents a real threat to the U.S. soybean sector. We assess the potential impacts of ASR on domestic soybean production and commodity markets as well as the competitive position of the US in the soybean export market. We develop a mathematical stochastic dynamic sector model with endogenous prices to assess the economic impacts of ASR on US agriculture. The model takes into account the disease spread during the cropping season, the inherent uncertainty regarding the risk of infection, and the dichotomous decisions that farmers make (no treatment, preventive treatment, and curative treatment) facing the risk of infection. Our results suggest substantial impacts from potential ASR spread on agricultural output, prices and exports. Our simulation results suggest that substantial losses to the US soybean producers may be avoided by establishing effective soybean rust controls. ASR control policies can be particularly efficient if applied in the gateway regions on the path of the ASR spread. On the other hand, our results indicate a possible gradual shift in soybean production from lower-latitude states toward higher-latitude statesAsian Soybean Rust, Stochastic Models, Dynamic Models, Crop Production/Industries, C61, Q13,
Teaching a New Dog Old Tricks: Resurrecting Multilingual Retrieval Using Zero-shot Learning
While billions of non-English speaking users rely on search engines every
day, the problem of ad-hoc information retrieval is rarely studied for
non-English languages. This is primarily due to a lack of data set that are
suitable to train ranking algorithms. In this paper, we tackle the lack of data
by leveraging pre-trained multilingual language models to transfer a retrieval
system trained on English collections to non-English queries and documents. Our
model is evaluated in a zero-shot setting, meaning that we use them to predict
relevance scores for query-document pairs in languages never seen during
training. Our results show that the proposed approach can significantly
outperform unsupervised retrieval techniques for Arabic, Chinese Mandarin, and
Spanish. We also show that augmenting the English training collection with some
examples from the target language can sometimes improve performance.Comment: ECIR 2020 (short
Economic Impacts of Soybean Rust on the US Soybean Sector
The spread of Asian Soybean Rust (ASR) represents a real threat to the U.S. soybean sector. We assess the potential impacts of ASR on domestic soybean production and commodity markets as well as the competitive position of the US in the soybean export market. We develop a mathematical stochastic dynamic sector model with endogenous prices to assess the economic impacts of ASR on US agriculture. The model takes into account the disease spread during the cropping season, the inherent uncertainty regarding the risk of infection, and the dichotomous decisions that farmers make (no treatment, preventive treatment, and curative treatment) facing the risk of infection. Our results suggest substantial impacts from potential ASR spread on agricultural output, prices and exports. Our simulation results suggest that substantial losses to the US soybean producers may be avoided by establishing effective soybean rust controls. ASR control policies can be particularly efficient if applied in the gateway regions on the path of the ASR spread. On the other hand, our results indicate a possible gradual shift in soybean production from lower-latitude states toward higher-latitude states.Asian Soybean Rust, Stochastic Models, Dynamic Models, Agribusiness, Marketing, C61, Q13,
Local Stellar Kinematics from RAVE data - VII. Metallicity Gradients from Red Clump Stars
We investigate the Milky Way Galaxy's radial and vertical metallicity
gradients using a sample of 47,406 red clump stars from the RAVE DR4. This
sample is more than twice the size of the largest sample in the literature
investigating radial and vertical metallicity gradients. The absolute magnitude
of Groenewegen (2008) is used to determine distances to our sample stars. The
resulting distances agree with the RAVE DR4 distances Binney et al. (2014) of
the same stars. Our photometric method also provides distances to 6185 stars
that are not assigned a distance in RAVE DR4. The metallicity gradients are
calculated with their current orbital positions ( and ) and with
their orbital properties (mean Galactocentric distance,  and ),
as a function of the distance to the Galactic plane:
d[Fe/H]/d- dex/kpc for  kpc and
d[Fe/H]/d- dex/kpc for  kpc. This
reaffirms the radial metallicity gradient in the thin disc but highlights that
gradients are sensitive to the selection effects caused by the difference
between  and . The radial gradient is flat in the distance
interval 0.5-1 kpc from the plane and then becomes positive greater than 1 kpc
from the plane. The radial metallicity gradients are also eccentricity
dependent. We showed that d[Fe/H]/d-, -,
- and - dex/kpc for , ,
 and  sub-samples, respectively, in the distance
interval  kpc. Similar trend is found for vertical
metallicity gradients. Both the radial and vertical metallicity gradients are
found to become shallower as the eccentricity of the sample increases. These
findings can be used to constrain different formation scenarios of the thick
and thin discs.Comment: 18 pages, including 16 figures and 6 tables, accepted for publication
  in PAS
Strictly singular operators and isomorphisms of Cartesian products of power series spaces
V. P. Zahariuta, in 1973, used the theory of Fredholm operators to develop a method to classify Cartesian products of locally convex spaces. In this work we modify his method to study the isomorphic classification of Cartesian products of the kind E0p(a)×E¥ q(b) where 1 £ p,q £ ¥, p ¹ q, a = (an)n=1¥ and b = (bn)n=1¥ are sequences of positive numbers and E0p(a), E¥ q (b) are respectively lp-finite and lq-infinite type power series spaces
Self-folding with shape memory composites
Origami-inspired manufacturing can produce complex structures and machines by folding two-dimensional composites into three-dimensional structures. This fabrication technique is potentially less expensive, faster, and easier to transport than more traditional machining methods, including 3-D printing. Self-folding enhances this method by minimizing the manual labor involved in folding, allowing for complex geometries and enabling remote or automated assembly. This paper demonstrates a novel method of self-folding hinges using shape memory polymers (SMPs), paper, and resistive circuits to achieve localized and individually addressable folding at low cost. A model for the torque exerted by these composites was developed and validated against experimental data, in order to determine design rules for selecting materials and designing hinges. Torque was shown to increase with SMP thickness, resistive circuit width, and supplied electrical current. This technique was shown to be capable of complex geometries, as well as locking assemblies with sequential folds. Its functionality and low cost make it an ideal basis for a new type of printable manufacturing based on two-dimensional fabrication techniques.National Science Foundation (U.S.) (award number CCF-1138967)National Science Foundation (U.S.) (award number EFRI-1240383
Treatment results and prognostic factors in primary thyroid lymphoma patients: a Rare Cancer Network study
Background: This study analyzed prognostic factors and treatment outcomes of primary thyroid lymphoma. Patients and Methods: Data were retrospectively collected for 87 patients (53 stage I and 34 stage II) with median age 65 years. Fifty-two patients were treated with single modality (31 with chemotherapy alone and 21 with radiotherapy alone) and 35 with combined modality treatment. Median follow-up was 51 months. Results: Sixty patients had aggressive lymphoma and 27 had indolent lymphoma. The 5- and 10-year overall survival (OS) rates were 74% and 71%, respectively, and the disease-free survival (DFS) rates were 68% and 64%. Univariate analysis revealed that age, tumor size, stage, lymph node involvement, B symptoms, and treatment modality were prognostic factors for OS, DFS, and local control (LC). Patients with thyroiditis had significantly better LC rates. In multivariate analysis, OS was influenced by age, B symptoms, lymph node involvement, and tumor size, whereas DFS and LC were influenced by B symptoms and tumor size. Compared with single modality treatment, patients treated with combined modality had better 5-year OS, DFS, and LC. Conclusions: Combined modality leads to an excellent prognosis for patients with aggressive lymphoma but does not improve OS and LC in patients with indolent lymphom
New Mediterranean biodiversity records (March 2016)
In this Collective Article on “New Mediterranean Biodiversity Records”, we present additional records of species found
in the Mediterranean Sea. These records refer to eight different countries mainly throughout the northern part of the basin, and
include 28 species, belonging to five Phyla. The findings per country include the following species: Spain: Callinectes sapidus
and Chelidonura fulvipunctata; Monaco: Aplysia dactylomela; Italy: Charybdis (Charybdis) feriata, Carcharodon carcharias,
Seriola fasciata, and Siganus rivulatus; Malta: Pomacanthus asfur; Croatia: Lagocephalus sceleratus and Pomadasys incisus;
Montenegro: Lagocephalus sceleratus; Greece: Amathia (Zoobotryon) verticillata, Atys macandrewii, Cerithium scabridum,
Chama pacifica, Dendostrea cf. folium, Ergalatax junionae, Septifer cumingii, Syphonota geographica, Syrnola fasciata, Oxyu-
richthys petersi, Scarus ghobban, Scorpaena maderensis, Solea aegyptiaca and Upeneus pori; Turkey: Lobotes surinamensis,
Ruvettus pretiosus and Ophiocten abyssicolum. In the current article, the presence of Taractes rubescens (Jordan & Evermann,
1887) is recorded for the first time in the Mediterranean from Italy. The great contribution of citizen scientists in monitoring
biodiversity records is reflected herein, as 10% of the authors are citizen scientists, and contributed 37.5% of the new findings.peer-reviewe
Design, fabrication and control of soft robots
Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.National Science Foundation (U.S.) (Grant IIS-1226883
To Invest or Not to Invest: Using Vocal Behavior to Predict Decisions of Investors in an Entrepreneurial Context
Entrepreneurial pitch competitions have become increasinglypopular in the start-up culture to attract prospective investors. As theultimate funding decision often follows from some form of social interaction,it is important to understand how the decision-making processof investors is influenced by behavioral cues. In this work, we examinewhether vocal features are associated with the ultimate funding decisionof investors by utilizing deep learning methods.We used videos of individualsin an entrepreneurial pitch competition as input to predict whetherinvestors will invest in the startup or not. We proposed models that combinedeep audio features and Handcrafted audio Features (HaF) and feedthem into two types of Recurrent Neural Networks (RNN), namely LongShort-Term Memory (LSTM) and Gated Recurrent Units (GRU). Wealso trained the RNNs with only deep features to assess whether HaFprovide additional information to the models. Our results show that it ispromising to use vocal behavior of pitchers to predict whether investorswill invest in their business idea. Different types of RNNs yielded similarperformance, yet the addition of HaF improved the performance
- …
