To Invest or Not to Invest: Using Vocal Behavior to Predict Decisions of Investors in an Entrepreneurial Context

Abstract

Entrepreneurial pitch competitions have become increasinglypopular in the start-up culture to attract prospective investors. As theultimate funding decision often follows from some form of social interaction,it is important to understand how the decision-making processof investors is influenced by behavioral cues. In this work, we examinewhether vocal features are associated with the ultimate funding decisionof investors by utilizing deep learning methods.We used videos of individualsin an entrepreneurial pitch competition as input to predict whetherinvestors will invest in the startup or not. We proposed models that combinedeep audio features and Handcrafted audio Features (HaF) and feedthem into two types of Recurrent Neural Networks (RNN), namely LongShort-Term Memory (LSTM) and Gated Recurrent Units (GRU). Wealso trained the RNNs with only deep features to assess whether HaFprovide additional information to the models. Our results show that it ispromising to use vocal behavior of pitchers to predict whether investorswill invest in their business idea. Different types of RNNs yielded similarperformance, yet the addition of HaF improved the performance

    Similar works