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Abstract. Entrepreneurial pitch competitions have become increasingly
popular in the start-up culture to attract prospective investors. As the
ultimate funding decision often follows from some form of social inter-
action, it is important to understand how the decision-making process
of investors is influenced by behavioral cues. In this work, we examine
whether vocal features are associated with the ultimate funding decision
of investors by utilizing deep learning methods. We used videos of individ-
uals in an entrepreneurial pitch competition as input to predict whether
investors will invest in the startup or not. We proposed models that com-
bine deep audio features and Handcrafted audio Features (HaF) and feed
them into two types of Recurrent Neural Networks (RNN), namely Long
Short-Term Memory (LSTM) and Gated Recurrent Units (GRU). We
also trained the RNNs with only deep features to assess whether HaF
provide additional information to the models. Our results show that it is
promising to use vocal behavior of pitchers to predict whether investors
will invest in their business idea. Different types of RNNs yielded similar
performance, yet the addition of HaF improved the performance.

Keywords: vocal behavior, entrepreneurial decision making, deep learn-
ing, VGGish, LSTM, GRU

1 Introduction

Entrepreneurial decision-making is at the core of successfully operating within
the business sector [37]. It includes all decisions made by entrepreneurs them-
selves and decisions made by others which have an immediate impact on the
entrepreneur. Due to the complex and dynamic environment (e.g., high uncer-
tainty, ambiguity, time pressure, high risks, etc.) that entrepreneurs and asso-
ciates (e.g., innovators, investors, inventors) are subject to as well as the fre-
quency with which decisions on entrepreneurial tasks and activities have to
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be made, the entrepreneurial decision-making process often relies on flexible
decision-making principles. Previous works [25], [18], [2], [13], [39] suggest that
when social interactions are involved during the decision-making process, behav-
ioral cues (e.g., physical appearance characteristics, posture and gestures, face
and eye movement, and vocal behavior) strongly affect the ultimate decision.
Even though many entrepreneurial decisions are made with little to no social
interactions, some decisions are heavily based on human-to-human interaction.
This is especially true for decisions related to the provision of financial resources
by investors in the start-up business environment as entrepreneurial pitch com-
petitions (i.e., events where entrepreneurs convey their start-up business idea to
prospective investors) are a common approach to attract financial support. Since
these decisions are associated with long-term start-up outcomes, understanding
how and to what extent behavioral cues expressed during social interactions in-
fluence the decision-making process of investors could benefit entrepreneurs as
they could apply this knowledge to increase the effectiveness of their presenta-
tion style which, in turn, could lead to an increase in funding [5], [25], [32]. In
general, enhancing our understanding of the decision-making process is valuable
as decisions have a direct effect on important outcomes for businesses, organi-
zations, institutions, individuals, and societies. Knowledge on how to improve
those outcomes would benefit all of these stakeholders [29].

Research on decision-making in the entrepreneurial context is predominantly
derived from psychological, sociological, and economic literature. In contrast,
research on using machine learning approaches for automated analysis of human
behavior to understand the entrepreneurial decision-making process is limited.
Previous work focused on applying conventional machine learning methods such
as k-Nearest Neighbors (kNN) and support vector machines (SVM) to predict
investment based on the visual features including facial actions [28], eye gaze
[3], and facial mimicry [19]. Vocal behavior has not been explored in automat-
ically predicting the decisions of investors. Given the superior performance of
deep learning-based approaches in several audio classification tasks [17] and the
significance of vocal behavior in decision-making process [14], we propose to uti-
lize deep learning methods to model vocal behavior and to predict decisions of
investors. This research is conducted on a dataset including video recordings
of individuals performing an entrepreneurial pitch about their start-up business
idea. They participated in a pitch competition to attract financial resources from
potential investors. This study may reveal the importance of vocal characteristics
in explaining decisions related to business funding and business growth which
have been neglected in research so far [25].

As vocal behavior is derived from speech that has spatiotemporal dynam-
ics, it is crucial to incorporate a deep learning approach with the ability to
retain information from previous time points. For that reason, Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) networks, which are two
types of Recurrent Neural Network (RNN), are incorporated as their perfor-
mance on sequence-based tasks and capturing long-term dependencies is well
established [7], [16]. Besides, LSTM and GRU are both considered to be effec-
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tive for recognizing vocal characteristics and classifying audio recordings. The
RNN architectures are combined with a Convolutional Neural Network (CNN)
where the CNN extracts context-aware deep audio features that are fed into the
RNN (e.g., [26], [33], [6]). Combining CNN’s capability to learn invariant features
with RNN’s capability to model temporal dependencies into a single classifier is
better known as a Convolutional Recurrent Neural Network (CRNN) [4], and is
the current state-of-the-art approach in research on audio classification. In this
study, we compare the performance of the models consisting of a CRNN archi-
tecture with LSTM or GRU with the proposed models additionally including
Handcrafted audio Features (HaF). Introducing HaF into the model can impact
the performance as Giannakopoulos et al. [12] reported a significant increase in
performance when deep context-aware audio features (i.e., CNN) were combined
with HaF. Additionally, Tianyu et al. [40] found that HaF capture complemen-
tary information that benefits the RNN.

Considering the literature on entrepreneurial decision-making and the vari-
ous deep learning approaches across the field of audio classification, this paper
explores the fusion of deep context-aware audio features and HaF in combina-
tion with the most common architectures for sequence modeling (i.e., LSTM
and GRU). Results show that the proposed deep learning models have the abil-
ity to detect and recognize vocal patterns which could be used to predict the
investor’s funding decision. Moreover, this study finds an increase in performance
when HaF are introduced into the model, while the impact of the different RNN
architectures is negligible as they yielded comparable performances.

2 Related work

Audio processing based on deep learning approaches is an emerging field due
to the promising results these methods produced for tasks such as pitch deter-
mination [16], audio and sound classification [34], affective speech classification
[23], and audio source separation [27]. As data used for audio processing con-
tains prominent sequential signals, a systematic approach that incorporates the
ability to capture spatiotemporal dynamics is required [16]. Recurrent Neural
Networks (RNN) are suitable for modeling sequential dependencies and nonlin-
ear dynamics within audio data as it is able to retain information from previous
allocation due to the recurrent connections within the network that allow for
encoding temporal information [16].

The approach of including a RNN for sequential modeling is widely adopted
across audio classification field. For example, Chung et al. [7] compares different
types of RNN architectures (i.e., LSTM and GRU) to a traditional Deep Neu-
ral Networks (DNN) and reveals that the models including the recurrent units
outperform the traditional DNN on classification tasks including music and raw
speech signal data.

Recent studies propose a Convolutional Recurrent Neural Network (CRNN)
where the RNN, which is highly capable learning temporal context and model
sequential data, is used in combination with a Convolutional Neural Network
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(CNN). The CNN model has proven to be effective in feature learning as it is
able to extract shift invariant high level features which could not be modeled
with feature engineering.

Traditionally, feature representations are generated from a feature engineer-
ing process which requires domain knowledge and relies heavily on researchers’
engineering effort for the task at hand. However, research towards feature learn-
ing in deep neural networks, which has been of interest lately as it reduces the
required expertise and engineering effort, explored the potential of CNN architec-
tures. Comparing the two approaches, a study by Trigeorgis et al. [41] on speech
emotion recognition concluded that feature representations created through an
end-to-end deep network significantly outperforms the approach of traditional
designed features based on signal processing techniques and shallow processing
architectures. They argue that deep networks, especially CNNs, have the abil-
ity to extract context-aware effective and robust acoustic features which better
suit the task at hand, and therefore, improve the performance of the model.
Hershey et al. [17] examines the performances of multiple CNN architectures on
audio soundtrack classification by proposing analogs of popular CNN networks
(e.g., AlexNet, VGG, Inception, and ResNet-50), which have proven to be ef-
fective in image classification. With minor modifications to the models, results
show that all CNN architectures yield significant performances on audio clas-
sification problems. Comparing the performances of the architectures trained
on 70M videos with 3.000 labels based on log-mel spectrogram inputs, the best
performing architecture incorporates the Inception-V3 model achieving 0.918
Area Under Curve (AUC) while the worst performing architecture employs the
AlexNet model achieving 0.894 AUC. The ResNet-50 and VGGish models re-
port 0.916 AUC and 0.911 AUC, respectively. The findings in this study support
that convolutional layers in deep neural networks effectively recognize and pre-
serve modulation patterns while omitting small deviations in pitch and timing
by training to extract, regardless of the offset frequency and start time, down-
and upward moving spectral patterns.

Lim et al. [26] propose a CRNN for rare sound event detection. They in-
corporate a CNN model for feature learning, which takes log-amplitude mel-
spectrogram extracted from the audio as the input feature and analyzes the
audio in chunk-level. The extracted features resulting from the CNN model are
fed into a two-layer LSTM network for modeling sequential information. The
best performing model report an error rate of 0.13 and a F-score of 0.931.

Sainath et al. [33] propose a Convolutional LSTM Deep Neural Network
(CLDNN) which is a unified framework that is trained jointly. In other words,
they design an architecture that captures information about the input repre-
sentation at different levels by combining a CNN, LSTM, and DNN. Here, the
CNN is used to reduce spectral variation in the input feature, the LSTM net-
work performs the sequential modeling, and the DNN layers are introduces for
the vocabulary tasks. Sainath et al. [33] hypothesize an improvement in perfor-
mance and output predictions when DNN layers are introduced into the CRNN
as the mapping between hidden units and outputs is deeper. Their initial pro-
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posed method achieved a word error rate of 17.3, which decreased to 17.0 when
uniform random weight initialization was introduced to deal with vanishing gra-
dients. Although their proposed model yields better results, the performance of
the CRNN model is with a word error rate of 17.6 considered comparable, yet
competitive. They conclude that both the CRNN model and the CLDNN model
are able to capture information at different resolutions. Additionally, the per-
formance of the CLDNN model was evaluated on a large dataset resulting in an
error rate of 13.1. However, this error rate increases to 17.4 when noise is added.

A similar CRNN configuration to that of [33] is adopted by Cakir et al. [4] for
a polyphonic sound event classification task. The main difference between the
network as proposed in [33] and applied in [4] is the type of RNN architecture in-
corporated. Cakir et al. [4] includes a GRU network instead of a LSTM network
to model the long-term temporal context in the audio. Other modifications are
with regards to the depth of the CNN and LSTM as they increase the number
of convolutional layers to four and add one more recurrent layer. They expect
their proposed method to outperform established methods in sound event detec-
tion. The evaluation results confirm that expectations are met as they show an
improvement in performance for the proposed method (i.e., CRNN) compared
to previous approaches to sound event detection. Previous approaches, using the
same dataset, report error rates between 16.0 to 17.5, while the CRNN achieves
an error rate of 11.3.

A CRNN which includes a GRU network as RNN architecture is also used for
music classification [6]. They compare the performances of the proposed network
to three existing CNN models, and expect that the ability to capture segment
structure and the flexibility introduced by the RNN benefits the classification
performances. Results show an AUC score of 0.86 for the CRNN, while the AUC
scores for the CNN models vary from 0.83 to 0.855. They conclude that the
CRNN effectively learns deep features which could be used for prediction tasks
such as predicting music tags.

Hence, the CRNN approach provides promising results across various audio
classification tasks. However, according to Pishdadian et al. [31] it would be
premature to disregard traditional feature representations in favour of exclu-
sively employing deep audio features as the handcrafted features could provide
the model with additional information that could not be captured by deep net-
works. Moreover, Kuncheva et al. [22] argues that combining complementary
and diverse features could improve the classification performances of a model.
Giannakopoulos et al. [12] provides support for this approach as they find a
significant increase in performance for classifying urban audio events and envi-
ronmental audio sounds when HaF are introduced into the models compared to
models that exclusively relied on deep audio features extracted using a CNN.
Giannakopoulos et al. [12] apply the different feature representations to similar
Support Vector Machine (SVM) architectures to compare their performances,
and reports accuracy levels of 44.2% and 52.2% for the model including exclu-
sively deep audio features and the model combining deep audio features with
HaF, respectively. They conclude that, based on a simple classification scheme
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Fig. 1. Pipeline of the proposed approach. Audio segments from the pitcher are used
as input to (i) pretrained VGGish network to obtain deep context-aware features and
(ii) OpenSMILE to obtain Handcrafted audio Features (HaF). Deep and handcrafted
features are concatenated and given as input to a LSTM or a GRU. The model predicts
whether the investors will invest in the pitcher’s business idea or not.

(i.e., SVM), the contextual knowledge of the input data could be significantly
increased when deep audio features are combined with typical HaF. Besides,
they recommend that future research should explore a similar approach in the
context of a deep learning framework.

This study builds upon the recommendation for future research of Gian-
nakopoulos et al. [12] by introducing HaF into the deep network. To apply the
current state-of-the-art approach, this study uses a CRNN architecture. As GRU
and LSTM networks are both commonly used in audio classification research,
this study compares the performances of these two networks.

3 Method

The proposed network (see Figure 1) takes a sequence of audio segments as
input, extracts deep and handcrafted audio features and concatenates them,
finally passes them through a recurrent neural network (LSTM or GRU) to
predict whether the startup will get investment or not.

3.1 Feature extraction

Within this study, two types of features are incorporated: (i) deep context-aware
features, and (ii) Handcrafted audio Features (HaF).

Deep context-aware features The deep context-aware features are extracted
with the VGGish architecture which is pre-trained on the YouTube-8M dataset
[43]. For the audio input, a short-time Fourier transform with a step size of 10
milliseconds is applied on 25 milliseconds windows to compute the spectrogram.
Spectrograms are mapped to 64 Mel-spaced frequency bins and frames with 96
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x 64 pixels are obtained [17]. Finally, log transform is applied to obtain log Mel
spectrograms, which are used as input to the pretrained VGGish model.

In this study, the VGGish network with 11 layers is used to extract deep
discriminative features. Moreover, the last max-pooling layer and the last group
of convolutional layers are dropped, resulting in a VGGish network architecture
of four modules [43], [31]. The VGGish network outputs a one-dimensional fea-
ture vector with 128 extracted features for every ∼1-second segment of the input
audio.

Handcrafted audio Features (HaF) The HaF are extracted using the open-
source OpenSMILE [10], [9] toolkit. OpenSMILE extracts both Low-Level De-
scriptors (e.g. pitch, energy, Mel Frequency Cepstral Coefficients) as well as their
functionals (e.g. extreme values, means, peaks, moments). We used LLDs and
functionals in feature set eGeMAPSv02 [8]. Previous work shows the usage po-
tential of the features from OpenSMILE in recognition and classification tasks
across multimedia research [9], [36], [35]. Moreover, the ComParE feature set is
applied on various multimedia tasks such as determining emotion from music,
speech and sound, and delivered state-of-the-art accuracy [42]). This configura-
tion was shown to be the best performing acoustic feature set for personality
impression prediction [15].

3.2 Modeling long-term temporal information

To model the long-term information in an audio sequence, extracted features
are passed through a recurrent neural network. We used two different RNNs
namely, LSTM and GRU. GRU contains less parameters compared to LSTM,
and generally performs well on limited training data [1] whereas LSTM can
remember longer sequences [7]. Our dataset is small in terms of the number
of videos and contains rather long sequences. For that reason, we used both
GRU and LSTM to model long-term temporal information. We used single-layer
GRU and LSTM networks and varied the number of hidden units within the set
[64, 128, 256, 512]. The representation obtained from LSTM or GRU is passed to
a binary classification layer to predict the investment decision label assigned to
the corresponding audio sequence.

4 Experimental setup

4.1 Dataset

The dataset used in this study was collected for the scientific purpose of inves-
tigating how our understanding of the decision-making process, that involves
social interactions in the entrepreneurial context, could be advanced by leverag-
ing modern data science techniques [25]. Our data [24] includes video recordings
from 43 individuals who perform an entrepreneurial pitch about their start-up
business idea and three judges assessing the pitches. From the total of 43 pitches,
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26 were performed in an offline setting while 17 were performed in an online
environment. The pitchers were all students who took part in the pitch compe-
tition as part of their university-level educational program on data science and
entrepreneurship. Pitchers had a maximum of three minutes to perform their
pitch followed by an interactive Q&A session in which the judges, who were all
experienced within the start-up ecosystem, could ask questions to the pitcher
for a maximum of ten minutes. For the purpose of this study, only the audio
recordings from the pitches are considered.

4.2 Preprocessing of audio recordings

Audio recordings from the pitch segments were extracted. As it is preferred to
process equally sized inputs to optimize the learning process of deep learning
algorithms, audio segments of 150 seconds are used as input. To this end, the
audio segments for pitches shorter than 150 seconds were (partially) duplicated
whereas for the longer pitches the 150 seconds from the middle of the pitch were
selected.

In order to train recurrent neural networks, we segmented audio segments
into non-overlapping chunks. In audio processing literature common values of
segment size vary from 1 to 10 seconds [20, 12]. Earlier works often adopt a one
second time frame when sounds are involved, but prefer a longer time frame (i.e.,
2-10 seconds) when music or speech is involved. In this study, we set the chunk
size to 2 seconds as it is reasonable to assume that speech lasts for at least 2
seconds [11].

From these 150-second audio segments we created 2-second chunks to approx-
imate the duration of speech [11]. This approach resulted in 75 non-overlapping
chunks of 2 seconds for all 43 pitches which were fed into the feature extractor.
The data was split into a training (80%) and test (20%) set to evaluate the
performance of the model.

4.3 Outcome predictor of investment decisions

After each pitch, each investor evaluated the performance of the pitcher and
assigned a score between 0 and 100 with intermediate steps of 5 indicating the
probability of investment. We mapped these scores into binary target labels
for each participant consisting of invest (i.e., class 1) or not invest (i.e., class
0). Although the potential investors (i.e., judges) all had experience within the
start-up business environment, their level of experience and expertise with re-
gards to new venture start-ups, new market developments, and new product
developments varied. Moreover, the potential investors had various backgrounds
(e.g., venture capitalists and business coach) and field of interests (e.g., sustain-
ability, technology, lifestyle, sports, non-profit). According to [38] and [30], the
investment decision-making process, and thereby the ultimate decision, is influ-
enced by the level of experience in the specific type of setting. In other words,
two investors with experiences in different markets might evaluate a start-up
business differently, resulting in a different decision on whether or not to provide
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financial resources. These differences in judgment also occur within the dataset
as for example one judge evaluated the probability to invest with a score of 80,
while another judge assigned a score of 20 to the same pitch. Considering the
diverse panel of judges, and thus the differences in evaluations, and by keeping
in mind the real-world setting where new ventures are looking for at least one
investor, the binary class label invest was assigned based on at least one positive
evaluation. That is, the label invest is assigned when at least one of the potential
investors evaluated the pitch with a probability to invest score of 50 or higher,
and the label not invest is assigned when all scores were lower than 50.

4.4 Models

The proposed models consist of a combination of deep and handcrafted features
and a RNN architecture (i.e., GRU or LSTM). In order to see the impact of hand-
crafted features, we performed an ablation study and used only deep features in
combination with LSTM or GRU. We trained the following four models:

Model 1: LSTM with deep context-aware features and HaF (CNN +
HaF + LSTM): this model includes a combination of features extracted
using VGGish and OpenSMILE and an LSTM for temporal information
processing.

Model 2: GRU with deep context-aware features and HaF (CNN +
HaF + GRU): this model includes a combination of features extracted
using VGGish and OpenSMILE and an GRU for temporal information pro-
cessing.

Model 3: LSTM with deep context-aware features (CNN + LSTM):
this model includes features extracted using VGGish architecture and an
LSTM for temporal information processing.

Model 4: GRU with deep context-aware features (CNN + GRU): this
model includes features extracted using VGGish architecture and a GRU for
temporal information processing.

In general, the process of the four defined models is similar. For each pitch,
75 non-overlapping 2-seconds audio chunks are sequentially put through the
feature extractor(s) which outputs a 2-dimensional feature vector for each pitch.
The feature vectors of all pitches are stacked together and form a 3-dimensional
input vector for the RNN, which is either the LSTM or the GRU.

We input 2-second audio chunks into VGGish network, which outputs a ma-
trix of size 2×128 for each chunk. The post-processing process flattens the feature
vector of the chunk to a 1-dimensional vector of size 1× 256, while stacking all
chunks together. This iterative process results in a feature matrix of size 75×256
for each pitch. A similar iterative process is defined for all files in the dataset,
resulting in the 3-dimensional feature vector which is fed into the RNN (i.e.,
LSTM or GRU). This process is applied while developing Model 3 and Model 4.

In Model 1 and Model 2, features extracted using VGGish and OpenSMILE
are concatenated to capture both deep context-aware features as well as HaF.
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The OpenSMILE toolkit extracts 113 features (when LLDs and functionals are
considered) for each input file resulting in a 1-dimensional feature vector of size
1×113 for each 2-second audio segment. This feature vector is concatenated with
the feature vector from the VGGish network into a feature vector of size 1× 369
for each chunk. While processing all the chunks, the resulting feature vectors of
the chunks are stacked together in a feature matrix of size 75× 369 for each file.
A similar iterative process is defined for all files in the concerned dataset (i.e.,
training set or test set), resulting in the 3-dimensional feature vector which is
fed into the RNN (i.e., LSTM or GRU).

4.5 Training

We performed hyperparameter tuning on each model based on a limited grid
search. The explored hyperparameters are number of units (64, 128, 256), dropout
rate (0, 0.1, 0.2), learning rate (1e-2, 1e-3, 1e-4), and number of epochs (10, 20,
50). Furthermore, each model includes the Adam optimization algorithm, which
is a robust yet computationally efficient stochastic gradient-based optimization
that combines the ability to deal with sparse gradient with the ability to deal
with non-stationary settings [21]. Moreover, since the models are designed for a
binary classification problem, the binary cross-entropy loss function was imple-
mented in all models.

5 Results

We compare the performances of the four models (CNN + HaF + LSTM, CNN
+ HaF + GRU, CNN + LSTM, and CNN + GRU) to understand the impact
of different RNN architectures and to analyze the impact of including HaF on
the performance. Table 1 summarizes the performances of the four models.

Table 1. Performances on the test set across the proposed models. The highest per-
formances are presented in bold.

Model Accuracy AUC

Model 1 CNN+HaF+LSTM 0.778 0.775
Model 2 CNN+HaF+GRU 0.778 0.750
Model 3 CNN+LSTM 0.667 0.650
Model 4 CNN+GRU 0.667 0.625

5.1 Comparison of different RNN architectures

We compare the performances of model pairs containing the same features, but
model the temporal information with different RNNs (Model 1 vs. Model 2,
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and Model 3 vs. Model 4). As shown in Table 1, a similar accuracy of 66.7%
is reported for the models containing only deep features regardless of the RNN
architecture. Moreover, the proposed models containing a combination of deep
and handcrafted features show a similar accuracy of 77.8% regardless of the
RNN architecture. With regards to the AUC score, small differences between
the models implementing the LSTM network sequence descriptor and models
implementing the GRU network as sequence descriptor are found. The LSTM
baseline model yields an AUC value of 0.650 whereas the GRU baseline model
results in an AUC value of 0.625. A similar difference is observed for Models
1 and 2 as the LSTM and GRU report AUC values of 0.775 and 0.750 respec-
tively. Hence, while in terms of accuracy scores similar performances between
the LSTM and GRU network are found, differences in AUC scores are reported
where models implementing the LSTM network appear to perform slightly better
than models implementing the GRU network.

5.2 Impact of HaF on performance

In order to evaluate the impact of HaF, the performances of models with the
same RNN, but with different features (with and without HaF) are compared.
As shown in Table 1, Model 3 (CNN+LSTM) reports an accuracy score of 66.7%
while Model 1 (CNN+HaF+LSTM) yields an accuracy score of 77.8%. A similar
increase in performance is found for the models including the GRU network as
RNN, where the models without (Model 4) and with (Model 2) HaF report accu-
racy scores of 66.7% and 77.8%, respectively. In terms of AUC scores, an overall
0.125 increase is reported for models including HaF. Model 3 and Model 1 result
in AUC values of 0.650 and 0.775, respectively. Similarly Model 4 yields 0.625
AUC while Model 2 yields 0.750 AUC score. Hence, an increase in both accuracy
and AUC scores is found when HaF are introduced into the model irrespective
of the type of RNN. This could indicate that the HaF capture complementary
information that benefits the model in learning and recognizing acoustic pat-
terns.

6 Conclusion

We aim to examine to what extent an investors’ decision to provide financial
resources could be predicted based on vocal behavior during entrepreneurial
pitches by fusing deep context-aware features and Handcrafted audio Features
(HaF) in combination with a Recurrent Neural Network (RNN) architecture,
particularly LSTM or GRU. Results show that models that combine deep and
HaF outperform the ones without HaF, which indicates that HaF provide the
models with additional information that could not be captured by deep features,
and that benefits the sequential modeling performance. Moreover, this study
shows that GRU and LSTM networks provide comparable performances on audio
data.
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This study concludes that it is promising to use vocal behavior to predict
an investors’ decision on whether or not to provide funding. One limitation is
that we used a combined set of offline and online (recorded during the Covid-19
lockdown) pitches to have a larger amount of data to train our deep learning
models. Considering the fact that non-verbal behavioral cues such as non-content
characteristics of speech could be different in online and offline settings, future
work could focus on investigating vocal behavior to predict investment in differ-
ent settings separately. Another limitation is that we focused on predicting the
binary variable reflecting whether the judges would invest in this business idea
derived from the probability of investment variable. As judges do not actually
make investments at the end of the competition, probability of investment may
not necessarily be the most genuine assessment made by them. In future work,
additional variables including originality, quality, and feasibility of the business
idea could also be predicted to gain a better understanding of decision-making in
an entrepreneurial context. Finally, in this work we focused only on vocal behav-
ior. Future research on entrepreneurial decision-making based on deep learning
approaches should examine the influence of combining multiple behavioral cues
(e.g., facial expressions and body movements) as this could provide us with
valuable insights into the way we, as humans, make decisions.
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