17 research outputs found

    Climate change and infectious livestock diseases: The case of Rift Valley fever and tick-borne diseases

    Get PDF
    Climate change influences the occurrence and transmission of a wide range of livestock diseases through multiple pathways. Diseases caused by pathogens that spent part of their life cycle outside the host (e.g. in vectors or the environment) are more sensitive in this regard, compared to those caused by obligate pathogens. In this chapter, we use two well-studied vector-borne diseases—Rift Valley fever (RVF) and tick-borne diseases (TBDs)—as case studies to describe direct pathways through which climate change influences infectious disease-risk in East and southern Africa. The first case study demonstrates that changes in the distribution and frequency of above-normal precipitation increases the frequency of RVF epidemics. The second case study suggests that an increase in temperature would cause shifts in the spatial distribution of TBDs, with cooler and wetter areas expected to experience heightened risk with climate change. These diseases already cause severe losses in agricultural productivity, food security and socio-economic development wherever they occur, and an increase in their incidence or geographical coverage would intensify these losses. We further illustrate some of the control measures that can be used to manage these diseases and recommend that more research should be done to better understand the impacts of climate change on livestock diseases as well as on the effectiveness of the available intervention measures

    Occurrence Patterns of Afrotropical Ticks (Acari: Ixodidae) in the Climate Space Are Not Correlated with Their Taxonomic Relationships

    Get PDF
    Foci of tick species occur at large spatial scales. They are intrinsically difficult to detect because the effect of geographical factors affecting conceptual influence of climate gradients. Here we use a large dataset of occurrences of ticks in the Afrotropical region to outline the main associations of those tick species with the climate space. Using a principal components reduction of monthly temperature and rainfall values over the Afrotropical region, we describe and compare the climate spaces of ticks in a gridded climate space. The dendrogram of distances among taxa according to occurrences in the climate niche is used to draw functional groups, or clusters of species with similar occurrences in the climate space, as different from morphologically derived (taxonomical) groups. We aim to further define the drivers of species richness and endemism at such a grid as well as niche similarities (climate space overlap) among species. Groups of species, as defined from morphological traits alone, are uncorrelated with functional clusters. Taxonomically related species occur separately in the climate gradients. Species belonging to the same functional group share more niche among them than with species in other functional groups. However, niche equivalency is also low for species within the same taxonomic cluster. Thus, taxa evolving from the same lineage tend to maximize the occupancy of the climate space and avoid overlaps with other species of the same taxonomic group. Richness values are drawn across the gradient of seasonal variation of temperature, higher values observed in a portion of the climate space with low thermal seasonality. Richness and endemism values are weakly correlated with mean values of temperature and rainfall. The most parsimonious explanation for the different taxonomic groups that exhibit common patterns of climate space subdivision is that they have a shared biogeographic history acting over a group of ancestrally co-distributed organisms

    Identification and characterization of Rhipicephalus (Boophilus) microplus candidate protective antigens for the control of cattle tick infestations

    Get PDF
    The cattle ticks, Rhipicephalus (Boophilus) spp., affect cattle production in tropical and subtropical regions of the world. Tick vaccines constitute a cost-effective and environmentally friendly alternative to tick control. The recombinant Rhipicephalus microplus Bm86 antigen has been shown to protect cattle against tick infestations. However, variable efficacy of Bm86-based vaccines against geographic tick strains has encouraged the research for additional tick-protective antigens. Herein, we describe the analysis of R. microplus glutathione-S transferase, ubiquitin (UBQ), selenoprotein W, elongation factor-1 alpha, and subolesin (SUB) complementary DNAs (cDNAs) by RNA interference (RNAi) in R. microplus and Rhipicephalus annulatus. Candidate protective antigens were selected for vaccination experiments based on the effect of gene knockdown on tick mortality, feeding, and fertility. Two cDNA clones encoding for UBQ and SUB were used for cattle vaccination and infestation with R. microplus and R. annulatus. Control groups were immunized with recombinant Bm86 or adjuvant/saline. The highest vaccine efficacy for the control of tick infestations was obtained for Bm86. Although with low immunogenic response, the results with the SUB vaccine encourage further investigations on the use of recombinant subolesin alone or in combination with other antigens for the control of cattle tick infestations. The UBQ peptide showed low immunogenicity, and the results of the vaccination trial were inconclusive to assess the protective efficacy of this antigen. These experiments showed that RNAi could be used for the selection of candidate tick-protective antigens. However, vaccination trials are necessary to evaluate the effect of recombinant antigens in the control of tick infestations, a process that requires efficient recombinant protein production and formulation systems

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Climate change and infectious livestock diseases: The case of Rift Valley fever and tick-borne diseases

    No full text
    Climate change influences the occurrence and transmission of a wide range of livestock diseases through multiple pathways. Diseases caused by pathogens that spent part of their life cycle outside the host (e.g. in vectors or the environment) are more sensitive in this regard, compared to those caused by obligate pathogens. In this chapter, we use two well-studied vector-borne diseases—Rift Valley fever (RVF) and tick-borne diseases (TBDs)—as case studies to describe direct pathways through which climate change influences infectious disease-risk in East and southern Africa. The first case study demonstrates that changes in the distribution and frequency of above-normal precipitation increases the frequency of RVF epidemics. The second case study suggests that an increase in temperature would cause shifts in the spatial distribution of TBDs, with cooler and wetter areas expected to experience heightened risk with climate change. These diseases already cause severe losses in agricultural productivity, food security and socio-economic development wherever they occur, and an increase in their incidence or geographical coverage would intensify these losses. We further illustrate some of the control measures that can be used to manage these diseases and recommend that more research should be done to better understand the impacts of climate change on livestock diseases as well as on the effectiveness of the available intervention measures

    An update on the ecological distribution of Ixodid ticks infesting cattle in Rwanda: countrywide cross-sectional survey in the wet and the dry season

    Get PDF
    As part of the epidemiological studies aimed at developing an East Coast fever (ECF) immunisation control strategy, which combines an infection and treatment method with strategic tick control, a countrywide tick survey was carried out in both the dry and the wet season to determine the abundance and the dynamics of the tick populations infesting cattle in Rwanda. Six Ixodid tick species where identified from a total of 12,814 tick specimens collected. Rhipicephalus appendiculatus, the main vector of ECF was the most abundant (91.8%) followed by Boophilus decoloratus (6.1%) and Ambyomma variegatum (1.2%). Few ticks from the three other less economically important Ixodid species (Rhipicephalus compositus, R. evertsi evertsi and Ixodes cavipalpus) were recovered. Both adult and immature stages of the most dominant tick species were found to be widespread with a year round presence. The numbers of ticks were high in low land and medium zones and declined markedly in the higher regions of Rwanda. The geographical distribution of various tick species throughout the country and their epidemiological implications are discussed

    Analysis of mid-twentieth century rainfall trends and variability over southwestern Uganda

    No full text
    A methodology has been applied to investigate the spatial variability and trends existent in a mid-twentieth century climatic time series (for the period 1943–1977) recorded by 58 climatic stations in the Albert–Victoria water management area in Uganda. Data were subjected to quality checks before further processing. In the present work, temporal trends were analyzed using Mann–Kendall and linear regression methods. Heterogeneity of monthly rainfall was investigated using the precipitation concentration index (PCI). Results revealed that 53 % of stations have positive trends where 25 % are statistically significant and 45 % of stations have negative trends with 23 % being statistically significant. Very strong trends at 99 % significance level were revealed at 12 stations. Positive trends in January, February, and November at 40 stations were observed. The highest rainfall was recorded in April, while January, June, and July had the lowest rainfall. Spatial analysis results showed that stations close to Lake Victoria recorded high amounts of rainfall. Average annual coefficient of variability was 19 %, signifying low variability. Rainfall distribution is bimodal with maximums experienced in March–April–May and September–October–November seasons of the year. Analysis also revealed that PCI values showed a moderate to seasonal rainfall distribution. Spectral analysis of the time components reveals the existence of a major period around 3, 6, and 10 years. The 6- and 10-year period is a characteristic of September–October–November, March–April– May, and annual time series.http://link.springer.com/journal/704hb201
    corecore