109 research outputs found

    Apolipoproteins A-I and B: biosynthesis, role in the development of atherosclerosis and targets for intervention against cardiovascular disease

    Get PDF
    Apolipoprotein (apo) AI and apoB are the major apolipoproteins of high-density lipoprotein (HDL) and low-density lipoprotein (LDL), respectively. ApoB assembles the precursor of LDL, very-low-density lipoprotein (VLDL), in the liver. The assembly starts with the formation of a primordial particle, which is converted to VLDL2. The VLDL2 particle is then transferred to the Golgi apparatus and can either be secreted or converted to triglyceride-rich VLDL1. We have reviewed this assembly process, the process involved in the storage of triglycerides in cytosolic lipid droplets, and the relationship between these two processes. We also briefly discuss the formation of HDL. ApoB mediates the interaction between LDL and the arterial wall. Two regions in apoB are involved in this binding. This interaction and its role in the development of atherosclerosis are reviewed. ApoB can be used to measure the number of LDL or VLDL particles present in plasma, as there is one molecule of apoB on each particle. By contrast, the amount of cholesterol and other lipids on each particle varies under different conditions. We address the possibility of using apoAI and apoB levels to estimate the risk of development of cardiovascular diseases and to monitor intervention to treat these diseases

    Human liver RNA-programmed in vitro synthesis of a polypeptide related to human apolipoprotein B

    Get PDF
    AbstractIn an in vitro synthesizing system programmed with RNA from human liver a polypeptide with an estimated Mr of 80000 (80 kDa)±1400 (mean±SD, n=5) was synthesized. This polypeptide could be precipitated with antiserum to a narrow density cut of LDL (d=1.030-1.055) or antiserum against the high-Mr form of apoB (apoB 100 [4]). The synthesized protein is immunologically related to a 75 kDa protein isolated from LDL. We suggest that the 80 kDa protein represents a primary translation product of apoB synthesized in human liver

    Replication and extension of genome-wide association study results for obesity in 4923 adults from northern Sweden

    Get PDF
    Recent genome-wide association studies (GWAS) have identified multiple risk loci for common obesity (FTO, MC4R, TMEM18, GNPDA2, SH2B1, KCTD15, MTCH2, NEGR1 and PCSK1). Here we extend those studies by examining associations with adiposity and type 2 diabetes in Swedish adults. The nine single nucleotide polymorphisms (SNPs) were genotyped in 3885 non-diabetic and 1038 diabetic individuals with available measures of height, weight and body mass index (BMI). Adipose mass and distribution were objectively assessed using dual-energy X-ray absorptiometry in a sub-group of non-diabetics (n = 2206). In models with adipose mass traits, BMI or obesity as outcomes, the most strongly associated SNP was FTO rs1121980 (P < 0.001). Five other SNPs (SH2B1 rs7498665, MTCH2 rs4752856, MC4R rs17782313, NEGR1 rs2815752 and GNPDA2 rs10938397) were significantly associated with obesity. To summarize the overall genetic burden, a weighted risk score comprising a subset of SNPs was constructed; those in the top quintile of the score were heavier (+2.6 kg) and had more total (+2.4 kg), gynoid (+191 g) and abdominal (+136 g) adipose tissue than those in the lowest quintile (all P < 0.001). The genetic burden score significantly increased diabetes risk, with those in the highest quintile (n = 193/594 cases/controls) being at 1.55-fold (95% CI 1.21–1.99; P < 0.0001) greater risk of type 2 diabetes than those in the lowest quintile (n = 130/655 cases/controls). In summary, we have statistically replicated six of the previously associated obese-risk loci and our results suggest that the weight-inducing effects of these variants are explained largely by increased adipose accumulation

    Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel

    Get PDF
    Aims To appraise the clinical and genetic evidence that low-density lipoproteins (LDLs) cause atherosclerotic cardiovascular disease (ASCVD). Methods and results We assessed whether the association between LDL and ASCVD fulfils the criteria for causality by evaluating the totality of evidence from genetic studies, prospective epidemiologic cohort studies, Mendelian randomization studies, and randomized trials of LDL-lowering therapies. In clinical studies, plasma LDL burden is usually estimated by determination of plasma LDL cholesterol level (LDL-C). Rare genetic mutations that cause reduced LDL receptor function lead to markedly higher LDL-C and a dose-dependent increase in the risk of ASCVD, whereas rare variants leading to lower LDL-C are associated with a correspondingly lower risk of ASCVD. Separate meta-analyses of over 200 prospective cohort studies, Mendelian randomization studies, and randomized trials including more than 2 million participants with over 20 million person-years of follow-up and over 150 000 cardiovascular events demonstrate a remarkably consistent dose-dependent log-linear association between the absolute magnitude of exposure of the vasculature to LDL-C and the risk of ASCVD; and this effect appears to increase with increasing duration of exposure to LDL-C. Both the naturally randomized genetic studies and the randomized intervention trials consistently demonstrate that any mechanism of lowering plasma LDL particle concentration should reduce the risk of ASCVD events proportional to the absolute reduction in LDL-C and the cumulative duration of exposure to lower LDL-C, provided that the achieved reduction in LDL-C is concordant with the reduction in LDL particle number and that there are no competing deleterious off-target effects. Conclusion Consistent evidence from numerous and multiple different types of clinical and genetic studies unequivocally establishes that LDL causes ASCVD.Peer reviewe

    Regulation and splicing of scavenger receptor class B type I in human macrophages and atherosclerotic plaques

    Get PDF
    BACKGROUND: The protective role of high-density lipoprotein (HDL) in the cardiovascular system is related to its role in the reverse transport of cholesterol from the arterial wall to the liver for subsequent excretion via the bile. Scavenger receptor class B type I (SR-BI) binds HDL and mediates selective uptake of cholesterol ester and cellular efflux of cholesterol to HDL. The role of SR-BI in atherosclerosis has been well established in murine models but it remains unclear whether SR-BI plays an equally important role in atherosclerosis in humans. The aim of this study was to investigate the expression of SR-BI and its isoforms in human macrophages and atherosclerotic plaques. METHODS: The effect of hypoxia and minimally modified low-density lipoprotein (mmLDL), two proatherogenic stimuli, on SR-BI expression was studied in human monocyte-derived macrophages from healthy subjects using real-time PCR. In addition, SR-BI expression was determined in macrophages obtained from subjects with atherosclerosis (n = 15) and healthy controls (n = 15). Expression of SR-BI isoforms was characterized in human atherosclerotic plaques and macrophages using RT-PCR and DNA sequencing. RESULTS: SR-BI expression was decreased in macrophages after hypoxia (p < 0.005). In contrast, SR-BI expression was increased by exposure to mmLDL (p < 0.05). There was no difference in SR-BI expression in macrophages from patients with atherosclerosis compared to controls. In both groups, SR-BI expression was increased by exposure to mmLDL (p < 0.05). Transcripts corresponding to SR-BI and SR-BII were detected in macrophages. In addition, a third isoform, referred to as SR-BIII, was discovered. All three isoforms were also expressed in human atherosclerotic plaque. Compared to the other isoforms, the novel SR-BIII isoform was predicted to have a unique intracellular C-terminal domain containing 53 amino acids. CONCLUSION: We conclude that SR-BI is regulated by proatherogenic stimuli in humans. However, we found no differences between subjects with atherosclerosis and healthy controls. This indicates that altered SR-BI expression is not a common cause of atherosclerosis. In addition, we identified SR-BIII as a novel isoform expressed in human macrophages and in human atherosclerotic plaques

    2017 Update of ESC/EAS Task Force on practical clinical guidance for proprotein convertase subtilisin/kexin type 9 inhibition in patients with atherosclerotic cardiovascular disease or in familial hypercholesterolaemia

    Get PDF
    A correction has been published: European Heart Journal, Volume 39, Issue 22, 7 June 2018, Pages 2105Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017.info:eu-repo/semantics/publishedVersio

    2019 ESC/EAS guidelines for the management of dyslipidaemias : Lipid modification to reduce cardiovascular risk

    Get PDF
    Correction: Volume: 292 Pages: 160-162 DOI: 10.1016/j.atherosclerosis.2019.11.020 Published: JAN 2020Peer reviewe
    corecore