14 research outputs found

    I.C.E.: An Ultra-Cold Atom Source for Long-Baseline Interferometric Inertial Sensors in Reduced Gravity

    Full text link
    The accuracy and precision of current atom-interferometric inertialsensors rival state-of-the-art conventional devices using artifact-based test masses . Atomic sensors are well suited for fundamental measurements of gravito-inertial fields. The sensitivity required to test gravitational theories can be achieved by extending the baseline of the interferometer. The I.C.E. (Interf\'erom\'etrie Coh\'erente pour l'Espace) interferometer aims to achieve long interrogation times in compact apparatus via reduced gravity. We have tested a cold-atom source during airplane parabolic flights. We show that this environment is compatible with free-fall interferometric measurements using up to 4 second interrogation time. We present the next-generation apparatus using degenerate gases for low release-velocity atomic sources in space-borne experiments

    Neurexin-1β Binding to Neuroligin-1 Triggers the Preferential Recruitment of PSD-95 versus Gephyrin through Tyrosine Phosphorylation of Neuroligin-1

    Get PDF
    Adhesion between neurexin-1β (Nrx1β) and neuroligin-1 (Nlg1) induces early recruitment of the postsynaptic density protein 95 (PSD-95) scaffold; however, the associated signaling mechanisms are unknown. To dissociate the effects of ligand binding and receptor multimerization, we compared conditions in which Nlg1 in neurons was bound to Nrx1β or nonactivating HA antibodies. Time-lapse imaging, fluorescence recovery after photobleaching, and single-particle tracking demonstrated that in addition to aggregating Nlg1, Nrx1β binding stimulates the interaction between Nlg1 and PSD-95. Phosphotyrosine immunoblots and pull-down of gephyrin by Nlg1 peptides in vitro showed that Nlg1 can be phosphorylated at a unique tyrosine (Y782), preventing gephyrin binding. Expression of Nlg1 point mutants in neurons indicated that Y782 phosphorylation controls the preferential binding of Nlg1 to PSD-95 versus gephyrin, and accordingly the formation of inhibitory and excitatory synapses. We propose that ligand-induced changes in the Nlg1 phosphotyrosine level control the balance between excitatory and inhibitory scaffold assembly during synapse formation and stabilization

    High-power and frequency-stable ultraviolet laser performance in space for the wind lidar on Aeolus

    Get PDF
    Global acquisition of atmospheric wind profiles using a spaceborne direct-detection Doppler wind lidar is being accomplished following the launch of European Space Agency's Aeolus mission. One key part of the instrument is a single-frequency, ultraviolet laser that emits nanosecond pulses into the atmosphere. High output energy and frequency stability ensure a sufficient signal-to-noise ratio of the backscatter return and an accurate determination of the Doppler frequency shift induced by the wind. This Letter discusses the design of the laser transmitter for the first Doppler wind lidar in space and its performance during the first year of the Aeolus mission, providing valuable insights for upcoming space lidar missions

    I.C.E.: An Ultra-Cold Atom Source for Long-Baseline Interferometric Inertial Sensors in Reduced Gravity

    No full text
    International audienceThe accuracy and precision of current atom-interferometric inertialsensors rival state-of-the-art conventional devices using artifact-based test masses . Atomic sensors are well suited for fundamental measurements of gravito-inertial fields. The sensitivity required to test gravitational theories can be achieved by extending the baseline of the interferometer. The I.C.E. (Interférométrie Cohérente pour l'Espace) interferometer aims to achieve long interrogation times in compact apparatus via reduced gravity. We have tested a cold-atom source during airplane parabolic flights. We show that this environment is compatible with free-fall interferometric measurements using up to 4 second interrogation time. We present the next-generation apparatus using degenerate gases for low release-velocity atomic sources in space-borne experiments

    miR-92a regulates expression of synaptic GluA1-containing AMPA receptors during homeostatic scaling

    No full text
    We investigated whether microRNAs could regulate AMPA receptor expression during activity blockade. miR-92a strongly repressed the translation of GluA1 receptors by binding the 3' untranslated region of rat GluA1 (also known as Gria1) mRNA and was downregulated in rat hippocampal neurons after treatment with tetrodotoxin and AP5. Deleting the seed region in GluA1 or overexpressing miR-92a blocked homeostatic scaling, indicating that miR-92a regulates the translation and synaptic incorporation of new GluA1-containing AMPA receptors

    Osmosensation in TRPV2 dominant negative expressing skeletal muscle fibres.

    No full text
    Increased plasma osmolarity induces intracellular water depletion and cell shrinkage followed by activation of a regulatory volume increase (RVI). In skeletal muscle, this is accompanied by transverse tubule (TT) dilation and by a membrane depolarisation responsible of a release of Ca(2+) from intracellular pools. We observed that both hyperosmotic shock-induced Ca(2+) transients and RVI were inhibited by Gd(3+) , ruthenium red and GsMTx4 toxin, three inhibitors of mechanosensitive ion channels. The response was also completely absent in muscle fibres overexpressing a non permeant, dominant negative mutant of TRPV2 ion channel (TRPV2-DN), suggesting the involvement of TRPV2 (Transient Receptor Potential, V2 isoform) or of a TRP isoform susceptible to heterotetramerize with TRPV2. The release of Ca(2+) induced by hyperosmotic shock was increased by cannabidiol, an activator of TRPV2 and decreased by tranilast, an inhibitor of TRPV2, suggesting a role for TRPV2 channel itself. Hyperosmotic shock-induced membrane depolarization was impaired in TRPV2-DN fibres, suggesting that TRPV2 activation triggers the release of Ca(2+) from the sarcoplasmic reticulum by depolarizing TT. RVI requires the sequential activation of SPAK (STE20/SPS1-related proline/alanine-rich kinase) and NKCC1, a Na(+) , K(+) and Cl(-) cotransporter allowing ions entry and osmotic water driving. In fibres overexpressing TRPV2-DN as well as in fibres in which Ca(2+) transients were abolished by the Ca(2+) chelator BAPTA, the level of P-SPAK(Ser373) in response to hyperosmotic shock was reduced, suggesting a modulation of SPAK phosphorylation by intracellular Ca(2+) . We conclude that TRPV2 is involved in osmosensation in skeletal muscle fibres, acting in concert with P-SPAK-activated NKCC1. This article is protected by copyright. All rights reserved
    corecore