130 research outputs found

    Sequential drain amylase to guide drain removal following pancreatectomy

    Get PDF
    BACKGROUND: Although used as criterion for early drain removal, postoperative day (POD) 1 drain fluid amylase (DFA) ≀ 5000 U/L has low negative predictive value for clinically relevant postoperative pancreatic fistula (CR-POPF). It was hypothesized that POD3 DFA ≀ 350 could provide further information to guide early drain removal. METHODS: Data from a pancreas surgery consortium database for pancreatoduodenectomy and distal pancreatectomy patients were analyzed retrospectively. Those patients without drains or POD 1 and 3 DFA data were excluded. Patients with POD1 DFA ≀ 5000 were divided into groups based on POD3 DFA: Group A (≀350) and Group B (>350). Operative characteristics and 60-day outcomes were compared using chi-square test. RESULTS: Among 687 patients in the database, all data were available for 380. Fifty-five (14.5%) had a POD1 DFA > 5000. Among 325 with POD1 DFA ≀ 5000, 254 (78.2%) were in Group A and 71 (21.8%) in Group B. Complications (35 (49.3%) vs 87 (34.4%); p = 0.021) and CR-POPF (13 (18.3%) vs 10 (3.9%); p < 0.001) were more frequent in Group B. CONCLUSIONS: In patients with POD1 DFA ≀ 5000, POD3 DFA ≀ 350 may be a practical test to guide safe early drain removal. Further prospective testing may be useful

    Including Functional Annotations and Extending the Collection of Structural Classifications of Protein Loops (ArchDB)

    Get PDF
    Loops represent an important part of protein structures. The study of loop is critical for two main reasons: First, loops are often involved in protein function, stability and folding. Second, despite improvements in experimental and computational structure prediction methods, modeling the conformation of loops remains problematic. Here, we present a structural classification of loops, ArchDB, a mine of information with application in both mentioned fields: loop structure prediction and function prediction. ArchDB (http://sbi.imim.es/archdb) is a database of classified protein loop motifs. The current database provides four different classification sets tailored for different purposes. ArchDB-40, a loop classification derived from SCOP40, well suited for modeling common loop motifs. Since features relevant to loop structure or function can be more easily determined on well-populated clusters, we have developed ArchDB-95, a loop classification derived from SCOP95. This new classification set shows a ~40% increase in the number of subclasses, and a large 7-fold increase in the number of putative structure/function-related subclasses. We also present ArchDB-EC, a classification of loop motifs from enzymes, and ArchDB-KI, a manually annotated classification of loop motifs from kinases. Information about ligand contacts and PDB sites has been included in all classification sets. Improvements in our classification scheme are described, as well as several new database features, such as the ability to query by conserved annotations, sequence similarity, or uploading 3D coordinates of a protein. The lengths of classified loops range between 0 and 36 residues long. ArchDB offers an exhaustive sampling of loop structures. Functional information about loops and links with related biological databases are also provided. All this information and the possibility to browse/query the database through a web-server outline an useful tool with application in the comparative study of loops, the analysis of loops involved in protein function and to obtain templates for loop modeling

    A dedicated electric oven for characterization of thermoresistive polymer nanocomposites

    Get PDF
    AbstractThe construction, characterization and control of an electric oven dedicated to the study of thermoresistive polymer nanocomposites is presented. The oven is designed with a heating plate capable of reaching 300°C with a resolution of 0.3°C and an area of uniform temperature of 3.8cm×2.5cm. The temperature is regulated by means of a discrete proportional–integral–derivative controller. A heat transfer model comprising three coupled non-linear differential equations is proposed to predict the thermal profiles of the oven during heating and cooling, which are experimentally verified. The oven is used for thermoresistive characterization of polymer nanocomposites manufactured from a polysulfone polymer and multiwall carbon nanotubes

    Analysis of a spatial Lotka-Volterra model with a finite range predator-prey interaction

    Full text link
    We perform an analysis of a recent spatial version of the classical Lotka-Volterra model, where a finite scale controls individuals' interaction. We study the behavior of the predator-prey dynamics in physical spaces higher than one, showing how spatial patterns can emerge for some values of the interaction range and of the diffusion parameter.Comment: 7 pages, 7 figure

    Oracle-based optimization applied to climate model calibration

    Get PDF
    In this paper, we show how oracle-based optimization can be effectively used for the calibration of an intermediate complexity climate model. In a fully developed example, we estimate the 12 principal parameters of the C-GOLDSTEIN climate model by using an oracle- based optimization tool, Proximal-ACCPM. The oracle is a procedure that finds, for each query point, a value for the goodness-of-fit function and an evaluation of its gradient. The difficulty in the model calibration problem stems from the need to undertake costly calculations for each simulation and also from the fact that the error function used to assess the goodness-of-fit is not convex. The method converges to a Fbest fit_ estimate over 10 times faster than a comparable test using the ensemble Kalman filter. The approach is simple to implement and potentially useful in calibrating computationally demanding models based on temporal integration (simulation), for which functional derivative information is not readily available

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids

    Get PDF
    Kidney failure is frequently observed during and after COVID-19, but it remains elusive whether this is a direct effect of the virus. Here, we report that SARS-CoV-2 directly infects kidney cells and is associated with increased tubule-interstitial kidney fibrosis in patient autopsy samples. To study direct effects of the virus on the kidney independent of systemic effects of COVID-19, we infected human-induced pluripotent stem-cell-derived kidney organoids with SARS-CoV-2. Single-cell RNA sequencing indicated injury and dedifferentiation of infected cells with activation of profibrotic signaling pathways. Importantly, SARS-CoV-2 infection also led to increased collagen 1 protein expression in organoids. A SARS-CoV-2 protease inhibitor was able to ameliorate the infection of kidney cells by SARS-CoV-2. Our results suggest that SARS-CoV-2 can directly infect kidney cells and induce cell injury with subsequent fibrosis. These data could explain both acute kidney injury in COVID-19 patients and the development of chronic kidney disease in long COVID
    • 

    corecore