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Abstract

In this paper, we show how oracle-based optimization can be used effectively for the cal-
ibration of an intermidiate complexity climate model. In a fully developed example, we
estimate the 12 principal parameters of the C-GOLDSTEIN climate model by using an
oracle-based optimization tool, Proximal-ACCPM. The oracle is a procedure which finds,
for each query point, a value for the goodness-of-fit function and an evaluation of its gradi-
ent. The difficulty in the model calibration problem stems from the need to undertake costly
calculations for each simulation and also from the fact that the error function used to assess
the goodness-of-fit is not convex. The method converges to a ‘best fit’ estimate over ten
times faster than a comparable test using the ensemble Kalman filter. The approach is sim-
ple to implement and potentially useful in calibrating computationally demanding models
based on temporal integration (simulation), for which functional derivative information is
not readily available.

Key words: Environment, model calibration, parameter estimation, oracle-based
optimization, cutting plane method.
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1 Introduction

The objective of this paper is to show how oracle-based optimization can be used
effectively in model calibration for intermediate complexity climate models. Fol-
lowing (Oliva, 2002), model calibration is defined as (i) the estimation of the model
parameters to obtain the best match between observed and simulated behaviour of
the phenomena described (parameter estimation) and (ii) the assessment of these
estimates by confidence intervals (estimate assessment).

Climate models are playing a central role in the scientific debate concerning
anthropogenic climate change, as indicated, for example, in the IPCC (Intergovern-
mental Panel on Climate Change) reports (IPCC, 2000, 2001). These models are
used to simulate the earth system response to the temperature forcing due to anthro-
pogenic emissions of greenhouse gases. They include descriptions of atmoshere,
ocean, ice and snow cover and precipitation dynamics in different locations on the
planet. Model calibration is a vital issue in climate and earth system modelling since
even so-called intermediate complexity models, such as the one used in this paper,
can have a large number of uncertain parameters. More complex models, generally
speaking, have correspondingly more, while simpler models typically have fewer
parameters, but correspondingly greater uncertainty in their values. For climate pre-
diction, in contrast to short-term weather prediction, parameter values, rather than
initial conditions, are considered to be the dominant source of uncertainty. This
may be true even for the ocean because interior processes are poorly understood or
quantified, even though initial conditions are forgotten only over millenia.

(Oliva, 2002) distinguishes two approaches for model calibration: optimal filter-
ing and model reference optimization. In optimal filtering approaches, as for ex-
ample the ensemble Kalman filter (EnKF) approach proposed by (Evensen, 2003),
the parameter estimation and the estimate assessment problems are treated simul-
taneously. These methods require some probabilistic assumptions concerning the
prior distribution of unknown parameters and the model measurement errors (rep-
resented by a covariance matrix). In model reference optimization approaches the
parameter estimation is done in a first step, followed by a second step concerning
the estimate assessment. In the parameter estimation step the objective is simply to
find the parameter values that minimize an error function (typically weighted least
squares) in order to get the best fit between observed and simulated data. No a priori
probabilistic information is assumed at this stage. In the estimate assessment step,
confidence intervals for the parameter estimates can be determined by performing
sensitivity analysis of the minimized error function (Oliva, 2002).

We may see the model reference optimization approach, applied to a climate
model, as an instance of a design problem where one has to choose the values
for static parameters that influence the performance of a complex dynamical sys-
tem. The difficulty lies indeed in the non-explicit link that exists between the static
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design parameter values and the evaluation of the dynamic system performance.
In this paper we propose to use an oracle-based optimization tool (OBOT), namely
Proximal-ACCPM, i.e, the proximal analytic center cutting plane method (du Merle
and Vial, 2002), to deal with this difficulty. An OBOT proceeds through a sequence
of queries where an oracle replies by sending information about the performance
indicator value and its gradient w.r.t. design parameter values. We demonstrate the
potential of the method by performing parameter estimation for C-GOLDSTEIN
(Hargreaves et al., 2004) which is a simplified physics, low-resolution climate
model, with a 3-D ocean, a 2-D atmosphere and a dynamic and thermodynamic
sea-ice component. In this paper, we describe how the parameter estimation step
has been performed using an OBOT. The extension to estimate assessment via sen-
sitivity analysis will be the subject of another report.

We will compare our results to those reported by (Hargreaves et al., 2004), where
the C-GOLDSTEIN model has been calibrated using an EnKF method.

The paper is organized as follows: In section 2 we briefly introduce the C-
GOLDSTEIN climate model. In section 3 we discuss the potential of Proximal-
ACCPM for climate model calibration. In section 4 we formulate the minimization
problem used to estimate the C-GOLDSTEIN parameters. In section 5 we briefly
introduce Proximal-ACCPM. In section 6 we give the implemention details. In sec-
tion 7 we report the results and finally, conclusions are given in section 8.

2 C-GOLDSTEIN

2.1 The model

In the hierarchy of climate and earth system models, C-GOLDSTEIN is of
intermediate complexity. Owing to a combination of low spatial resolution and
simplified physics, the model achieves an integration speed of one or two thou-
sand years per hour on a modern PC (Pentium-IV, 2.4 GHz), thus it is three or
four orders of magnitude (o.o.m.) more computationally efficient than widely used
high-resolution GCMs such as HadCM3 (Gordon et al., 2000), and one or two
o.o.m. faster than other intermediate complexity models with three-dimensional
ocean components such as ECBILT-CLIO (Goosse et al., 2001) or the UVic model
(Weaver et al., 2001). On the other hand C-GOLDSTEIN is an o.o.m. slower than
the reduced dimensionality Bern 2.5-D model (Stocker et al., 1992).

The oceanic momentum budget is represented by a simplified frictional geostrophic
balance which is approximately valid for long timescales, of years to decades or
more, and large spatial scales, of order 1000 km or more. The detailed dynamics
of oceanic eddies, for instance, are neglected. The atmosphere has a single layer
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so that atmospheric processes are represented by a balance of energy and moisture
plus simple horizontal transport by anisotropic diffusion and advection by a fixed
wind field. Feedbacks involving changes in atmospheric circulation and precipi-
tation patterns, and feedbacks involving the land surface, are therefore relatively
poorly represented or ignored. Sea-ice height and areal coverage are similarly gov-
erned by a local heat and fresh water balance, plus advection by surface currents
with a diffusive term to represent unresolved processes. For the studies described
here, the ocean component is configured with 8 vertical levels while all components
share the same 36 by 36-cell horizontal grid.

Processes relevant to global-scale ocean circulation are reasonably well repre-
sented by this version, as shown by (Hargreaves et al., 2004). As a result of its
efficient but relatively faithful representation of large-scale ocean dynamics, the
model has proved useful for studies of glacial circulation states (Rohling et al.,
2004), integrated assessments of climate change impacts (Drouet et al., 2005) and
parametric investigations of the stability of the thermohaline circulation (Marsh
et al., 2005). The model is described more fully in (Edwards and Marsh, 2003).
C-GOLDSTEIN forms a component of the Grid Enabled Integrated Earth System
Model (GENIE) project (http://www.genie.ac.uk) in the context of which an Earth
System Model with more detailed representations of atmosphere, land-ice, ocean
biogeochemistry and land-surface processes is under development.

2.2 The parameters

C-GOLDSTEIN contains a total of around 75 physical and model parameters, a
subset of 12 or which were identified in (Edwards and Marsh, 2003) as the princi-
pal adjustable parameters governing transport and mixing, and thus the large-scale
distributions of climatic variables (temperature, humidity etc). Even where these
parameters correspond to well-defined physical processes which may, in principle,
be measurable, the correct physical values remain hard to ascertain experimentally.
Further, even where an appropriate true global average value could be tightly con-
strained by measurements, it may be appropriate to allow the model value to deviate
from the measured bounds if this allows the model dynamical system to better ap-
proximate the real climate, in some desired averaged sense.

Thus in (Edwards and Marsh, 2003), an averaged error function is defined which
measures the mean square departure of the model state from observations. Good es-
timates of the 12 parameters are found by minimizing the error, over an ensemble of
1000 randomly chosen parameter sets within a predefined range. To better compare
estimation results, exactly the same optimization problem, using the same data, the
same cost function and, as far as possible, the same prior ranges, were addressed
both in the present work and in the EnKF study of (Hargreaves et al., 2004). How-
ever, the prior information and the cost are treated somewhat differently by (Harg-
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reaves et al., 2004) as noted below. The observational data correspond to ocean and
surface atmospheric statistics averaged over a period of around 50 years. Although
there has been significant change in upper ocean and atmosphere temperatures over
this period, these changes will be small relative to the error in such a simple model.
Indeed, the error function essentially tests how well the model can reproduce the
spatial distributions of atmospheric and oceanic variables. Since sources of internal
variability such as eddies are not represented, the model typically responds to the
steady imposed solar forcing used here by a slow approach toward a steady state.
Physically, then, we consider this steady state as a representation of the preindus-
trial climate and wish to choose parameters which minimize the deviation between
the steady state and the data.

3 Potential of Proximal-ACCPM for climate model calibration

In this section we briefly review possible alternatives for performing model cal-
ibration and we indicate why we believe an OBOT such as Proximal-ACCPM is
well suited to this task.

As indicated in the introduction, model calibration has been attempted via two
main strands of approaches; those related to optimal filtering, represented by the
Kalman filter family of methods, and model reference optimization. The Kalman
filter can be seen as a recursive predictor-corrector method (Welch and Bishop,
2003) that was initially designed to estimate the state of a stochastic linear dy-
namical system. By starting at an initial guess of the system state and of the error
covariance matrix and after some predictor-corrector iterations, the Kalman filter
outputs an optimal estimated state and its associated error covariance matrix. The
Kalman filter supposes an underlying linear system that at each iteration predicts
the future state. Furthermore, at each Kalman filter iteration the state prediction and
its associated error covariance matrix, are corrected by incorporating the measured
information. Both linear system and measurements have associated noise functions
which are assumed white and Gaussian.

A powerful variant of the Kalman filter suitable for non-linear systems is the En-
semble Kalman Filter (EnKF), introduced by (Evensen, 1994). The EnKF is based
on an ensemble (set) of model states instead of a single model state (in contrast with
the Kalman filter). As pointed out in (Welch and Bishop, 2003), the EnKF can be
interpreted as a statistical Monte Carlo method where the ensemble of model states
evolves in the state space with the mean as the best estimate and the spreading of
the ensemble determining the error variance. In the Kalman filter the stochasticity
of the system state is completely represented by the estimate itself and the error
covariance matrix. In contrast, in the EnKF, the stochasticity is approximately rep-
resented by the estimate itself and a cloud of points around it (ensemble of system
states).
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The Kalman filter is also used for parameter estimation (model identification).
(Anderson, 2001) shows how to implement the EnKF for this purpose. The tech-
nique consists in extending the definition of the state vector so as to include the
model parameters (see (Derber, 1989)). (Hargreaves et al., 2004) report on a cali-
bration of the C-GOLDSTEIN model using the EnKF technique. This study showed
a great improvement in computational efficiency compared to simpler Monte-Carlo
parameter estimation techniques, but the calculation was still relatively expensive,
requiring 54 model runs, each of around 10,000 years (several times the model’s
intrinsic adjustment timescale). A critical detail of the method was that the model
state and model parameters were treated differently in the iteration, in that the prior
estimates for the model state were continually updated while the prior estimates for
the parameters were not. This constrains the parameters to remain relatively close
to the mean of the original, Gaussian parameter distributions.

In model reference optimization approaches one must first decide on the error
function � to be minimzed. A common choice is weighted least squares which can
be related to the maximum-likelihood method under appropriate assumptions on
the distribution of errors (Oliva, 2002). To minimize the error function one may use
zero-order methods, which only require evaluations of � , first-order methods which
require also the evaluation of the gradient � and second-order methods which ask
in addition for the evaluation of the Hessian � . In (Solomatine, 1999), zero-order
methods (genetic algorithms, controlled random search, etc.) are used to calibrate
different models arising in water industry systems. In this implementation the num-
ber of function evaluations is of the order of several thousands. In (Yang and Elga-
mal, 2003) a second-order method based on the Broyden-Fletcher-Goldfarb-Shano
(BFGS) method is used to calibrate three parameters of a soil constitutive model. In
this application only three parameters had to be estimated and the number of calls
to the function evaluation was of the order of fifty to several hundreds.

Proximal-ACCPM is a cutting plane method which belongs to the class of first-
order methods. In the C-GOLDSTEIN calibration problem, the only available func-
tional information is the error function value � obtained at a high computational
expense. The remaining functional information, � and � , when needed, has to be
numerically computed by finite differences or automatic differentiation techniques.
In our opinion, a first-order method represents a priori a good compromise when
implemented through an algorithm like Proximal-ACCPM which keeps the number
of oracle calls (defining the cutting planes) at a moderate level. Furthermore, most
of the optimization methods are based on line search along an improvement direc-
tion, which requires extra function evaluations. In our case, the use of a method
which is free of line search, like Proximal-ACCPM, is an advantage considering
the very high computational cost of each function evaluation.

The main limitation of cutting plane methods is that in principle they are de-
signed for convex optimization. Given that our error function shows non-convexities,
we have adapted Proximal-ACCPM in order to deal with them. It is therefore im-
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portant to note that we will not be able to guarantee that even a local optimum has
been reached. However the method will provide solutions that improve the fit with
observed data. We have also to note that global optimization methods (Horst and
Tuy, 1996), which are designed for non-convex functions, are computationally too
demanding for this class of problems. Indeed these methods rely on enumeration
schemes, like e.g. branch-and-bound methods, which usually result in a very high
number of function evaluations.

4 The minimization problem

Our goal in this section is to formulate the parameter estimation minimization
problem for the C-GOLDSTEIN model. For this purpose we characterize the mod-
elled climate state by the vector ������� , which consists of the values of oceanic
temperature and salinity and of atmospheric temperature and humidity at every
model grid point. The minimization therefore does not explicitly consider velocity
and sea-ice variables, but these are tightly linked to � by the model dynamics. Note
that � corresponds to the steady state attained after a long integration and depends
on twelve model parameters represented by � . Otherwise stated, for every possi-
ble vector of parameters � , C-GOLDSTEIN returns a vector �	�
��� . On the other
hand, the real earth climate is represented by the observed state 
������ . As error
function we use the weighted mean square error

���
����� �� �� � ��� ���
�
�
������


�
���� �

� !
(1)

where the weight
� �
�

is the variance associated to 

� !#" � � !%$%$%$&! �

. There is thus
one value of

� � for each of the four physical variables, temperature and salinity in
the ocean and temperature and humidity in the atmosphere. Both the variances and
the mean error are calculated in computational space rather than physical space, i.e.
unweighted by grid-cell volume, so that variables in regions of lower resolution do
not carry greater weight. The error function is thus a balanced measure of how well
the model succeeds in representing the quantities it attempts to represent.

Our parameter estimation problem searches for a set of parameters �(' that min-
imizes � over all allowed parameter sets and can be formulated as

� ' � arg )+*-, ���.���
s.t. �/�10324� � � ! (2)

where the box domain 0 for the model parameters is defined by a lower and upper
bound for each parameter �

�
, that is,

05�768� � ! � �:9<; $%$%$ ; 6 � � � ! � � � 9 $ (3)
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Fig. 1. Evolution of f(x) along the wind-scale parameter direction

The bound values can be found in Table 2.

As in any minimization problem a very important question is whether � is a
convex function. However, the complexity of the C-GOLDSTEIN model prohibits
us from determining the convexity of ���
��� analytically. As an heuristic approach,
we can plot slices of the graph of ���.��� along the coordinate axes, i.e. we can plot� � ������� ���.�������	�

�
� ! " � � !�
�
�
 ! ��


, where �
�
� ��� !%$%$ $ ! �

� !%$%$ $ ! � � is the ith canon-
ical vector of � � � and ��� is the central point of the domain 0 . We have encoun-
tered convex and non-convex plots (see Fig. 1-2) thus � is clearly not a fully con-
vex function. Similar, single-parameter bifurcation experiments were conducted by
(Edwards and Marsh, 2003) for all 12 parameters. Most yielded convex graphs,
but parameters controlling the global hydrological cycle in particular, such as at-
mospheric humidity transport, showed evidence of non-convexity associated with
hysteresis and bifurcations between contrasting global ocean circulation states. We
discuss this matter later. The second main difficulty is that each evaluation of �
takes about 2.5 hours on a modern PC (Pentium-IV, 2.4 GHz.), since for any set of
parameters � , ���
��� is obtained after a long simulation.

5 Proximal-ACCPM

To solve (2) we use Proximal-ACCPM (proximal analytic center cutting plane
method), an effective and robust cutting plane method (du Merle and Vial, 2002).
In its iterations, Proximal-ACCPM produces an outer polyhedral approximation of
the function epigraph

�
. This approximation serves to delineate a localization set

which contains the optimum. For convex optimization problems, the localization
set rapidly shrinks to yield an optimal solution � ' . The role of Proximal-ACCPM is�

The set of points that lie on or above the graph of a real-valued function, that is, the set
of points ���������������� � such that �"!$#%���&� .

8



−1 −0.5 0 0.5 1
0.70 

0.75 

0.80 

0.85 

0.9 

0.95 

1.00 

1.05 

1.10 

α : T diff. amp.

φ 5(α
)

Fig. 2. Evolution of f(x) along the T. diff. amp. parameter direction

to efficiently guide the construction of such an approximation and eventually to find� ' . Proximal-ACCPM is a convex optimization tool and therefore must be applied
with care when one deals with a non-convex problem as is the case here.

In the procedure, we consider a sequence of points � ����� ����� in the search domain0 . We denote by � � the gradient of ���.��� at � � , that is, � � �
	 ���.� � � . We consider
the linear approximation to ���
��� at ��� , given by ��� �
��� � ���
�
� � � ��� 
 �.� � �
� � and
have

� � �
����� � �.���
for all � (to introduce Proximal-ACCPM we assume that � is convex).

The point � � is referred to as a query point, and the procedure to compute the
objective function and its gradient at a query point is called an oracle. Furthermore,
the hyperplane that approximates the objective function ���.��� at a feasible query
point and defined by the equation � � � � �
��� , is referred to as a cut.

An upper bound to the minimum value of ���.��� is provided by:
��� � )+*-,� ���
� � � $

The localization set is defined as
� ��� �
� ! � ��� � � �  ��� ��� � � �
��� ��� ��� ! ��� ��� � $ (4)

The basic iteration of a cutting plane method can be summarized as follows

(1) Select � �� ! ��	� in the localization set
�

.
(2) Call the oracle at

�� . The oracle returns one cut and a new upper bound ��� ���� .
(3) Update the bounds:

(a)
��� � )+*-,!� ��� ���� ! ��� � .

(b) Compute a lower bound
�#"

to the optimum of problem (2). For example,��" � ) * ,
��� � �
� ! � ��� ��$ 0%� .
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(4) Update the upper bound
�#�

and add the new cut in the definition of the local-
ization set (4).

These steps are repeated until a point is found such that
� � � ��" falls below a pre-

scribed optimality tolerance. The initial domain is thus ‘cut’ down in size by the
repeated removal of regions which cannot contain the optimum (given the assump-
tion of convexity).

Cutting plane methods essentially differ in the way one chooses the query point.
For instance, the intuitive choice of the Kelley point � �� ! ��	� (Kelley, 1960) that mini-
mizes � in the localization set may prove disastrous, because it over-emphasizes the
global approximation property of the localization set. Safer methods, as for exam-
ple bundle methods (Hiriart-Urruty and Lemaréchal, 1996) or Proximal-ACCPM
(du Merle and Vial, 2002), introduce a regularizing scheme to avoid selecting points
too “far away” from the best recorded point. Proximal-ACCPM selects the proxi-
mal analytic center of the localization set. Formally, the proximal analytic center
is the point � �� ! �� � that minimizes

��� �
� ! � � , defined as the logarithmic barrier � of
the localization set plus a quadratic proximal term which ensures the existence of
a unique minimizer � for

��� �.� ! � � . This point is relatively easy to compute using
the standard artillery of Interior Point Methods. Furthermore, Proximal-ACCPM is
robust, efficient and particularly useful when the oracle is computationally costly
—as is the case in this application.

6 Implementation details

6.1 Variable scaling

The bounds for the twelve parameters �
�
and �

�
, that define 0 in (3), vary greatly

from parameter to parameter (see Table 2) thus in order to optimize efficiently,� needs scaling. (Gill et al., 1995) propose a linear transformation of the form����� �	� � ��
�����
 where 
 � 6��
�
� 9 is a diagonal matrix, �

� �
� � $�� � �

�
� �

�
� ,

and 

�
� � $�� � �

�
� �

�
� . In this case ��� � �.��� transforms domain 0 into 6 � � ! � 9 � � and

� The logarithmic barrier for the half space � � ��� ��������� !�� � is !#"%$'& �(�)!������ � .
� That is, the proximal analytic center of * is the point

�,+���-+� ��. argmin /�0 132 � ������� ��. argmin /�0 14� 265 ������� �87:98;��<!>=�?; � ���
where 265 ������� � is the logarithmic barrier for the localization set * , 9 is the proximal weight,
and =� is the proximal point (current best point).
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problem (2) is transformed into the following equivalent one:

� ' � arg ) * , ���� � �
s.t. �#� 6 � � ! � 9 � � ! (5)

where �
��� � � � �� �� � ��� �

��
�
� � � � 


�
� �� �

� !
and with

��	�	� � � � �(� �	� � � � �	�.��� . Although in practice we solve the scaled prob-
lem (5), we will continue to use the simpler ‘ ���
��� ’ notation instead of ‘

�
���	� � ’ for

convenience.

6.2 Derivative approximation

Since it is not feasible to derive an analytical expression for 	 ���.��� , we approx-
imate the partial derivatives by the forward-difference formula:

� ���.���� �
��� �

� 6 � �.� � � �
�
� � ���
��� 9 " � � !%$%$%$ ! ��
 $

(6)

As we will see later, we only use approximate values
�

� �.��� instead of the true value
���.��� . In this case, special care must be taken in the computation of the approx-
imated partial derivatives (Gill et al., 1995). Given that

�
� �.��� introduces an error� �
��� , i.e.,

�
� �
��� � ���.���%� � �
��� , then we have

�
� 6 ����
� � � �

�
� � ����.��� 9 � �

� 6 ���.� � � �
�
� � � �.��� 9 � �

� 6 � �.��� � � �.� � � �
�
� 9

� � ���
���� �
� �

�
� 6 � �.��� � � �.� � � �

�
� 9 ! " � � !%$%$%$ ! ��
 $

Thus, even for a small error
� �.��� � � �.� � � �

�
� , we may obtain completely mean-

ingless approximated derivatives for small values of
�

. In our computational expe-
rience this has been the case for

� ��� � � � �
	 � and best results have been obtained
with

� ��� � � � � � � or
� ���#� � � � � � .

6.3 Coping with non-convexity

As already stated, Proximal-ACCPM is designed for convex problems. The con-
vexity assumption is crucial in the convergence analysis of the method (Nesterov,
1995; Goffin and Ye, 1996), and even in its definition. Indeed the definition of
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analytic center applies to convex sets with a nonempty interior. The localization
set that Proximal-ACCPM builds satisfies this assumption when the function to
be minimized is convex. If the function is not convex, simple examples show that
the oracle may produce cuts that totally exclude the current localization set. After
adding the new cut, the set becomes empty and the method fails.

In our case, we know that the function we minimize is not convex. Indeed, we
have observed that the oracle occasionally produces cuts that exclude a previously
computed point, which, by construction, belongs to the epigraph set. To cope with
the risk of an empty localization set, we use a simple device, based on the observa-
tion that the epigraph of a function is unbounded along the vertical axis. To ensure
non-emptiness, we check whether a new cut excludes our reference point (the best
point in the epigraph generated so far). If not, we proceed as usual, otherwise we
lift the upper bounding cut by a sufficient amount.

This procedure is heuristic. It guarantees that the method does not unduly stop.
However, we cannot guarantee that the point at which the convergence criterion of
Proximal-ACCPM is met corresponds to a local minimum. We can only claim that
we have empirical evidence on our climate problem that our simple heuristic device
enables Proximal-ACCPM to converge to a point with low least-squares residual.
This positive result is probably due to the fact that the function we minimize is
only mildly non-convex, at least in the area of interest. Further enhancement of the
Proximal-ACCPM technique would be required in order to guarantee convergence
to a local minimum in non-convex cases.

6.4 Fast computing of the error function

We now consider how to accelerate the computation of the costly � �.��� . The
error function ���
��� is a continuous function of �	�.��� whose definition is based on
the integration of a system of partial differential equations along an infinite time
horizon. If we define

�� � ��� !�� ! ��� as the final state associated to an initial state � � ,
an integration length

�
and a vector of system parameters � , then by definition�	�.��� ���-* )����	� ��	����� !�� ! ��� for any ��� � 
 � , the set of suitable initial states of the

dynamical system. (Note that we are assuming, for now, that �	�.��� does not depend
on the initial state ��� ).

In practice, we have observed that with an integration length of 5000 years we
obtain a very good approximation of �	�.��� for a reasonable initial state � � , i.e.,�	�.��� � ��	��� � ! � � � � ! ��� . The computing of

��	��� � ! � � � � ! ��� , takes about 2.5 hours on a
modern PC (Pentium-IV, 2.4 GHz). At each iteration of Proximal-ACCPM we need
to compute ���.�
� � and the approximation to 	 � �.�!�%� given by (6), which implies the
evaluation of �	�.��� at 13 points. This means that with this direct approach we need
about 32.5 hours of CPU for each Proximal-ACCPM iteration.
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An alternative to this direct approach is to use the so-called warm start procedure
in C-GOLDSTEIN. Assuming, once again, that for two different initial states � � and� � we have �	�
��� � � * )���	� ��	��� � !�� ! ��� � � * )���	� ��	��� � !�� ! ��� !
we can accelerate the computing of, say �	�.� � � , provided we already know � �
� � � for
an � � close to � � . In this case �	�.� � � should not to be too far from �	�.� � � and therefore
a short integration with �	�.� � � as initial state, should be enough to compute �	�.� � � .
That is, �	�.� � � � ��	��� � ! � � ! � � � � ��	� � �
� � � !�� � ! � � � !
with

�
�����

�
� � � � � � .

��	� ��� !�� � ! � � � and
��	���	�.� � � ! � � ! � � � are respectively called the

standard start and the warm start approximations of �	�.� � � . Analogously,
�
� and

�
�

are respectively called the standard start and warm start integration lengths.

The error function associated to
��	����� !�� ! ��� is

�
� ��� � !�� ! ����� �� �� � ��� �

��
�
� ��� ! � ! ��� ��


�
� �� �

� $

By continuity,
�

� ��� � !�� ! ��� inherits the asymptotic behaviour of
��	��� � !�� ! ��� . For exam-

ple, it is easy to see that ���.��� � �-* ) ���	� �������� !�� ! ��� for any ��� � 
 � . Analogously,�
������� ! � � ! � � � and

�
� ���	�.� � � ! � � ! � � � are respectively called the standard start and the

warm start approximations of � �.� � � .
To compute fast and reliable approximation to ���
� � � and to 	 ���.� � � , we use the

warm start procedure as follows:

Central point warm start algorithm

(1) Warm start initialization: Previous to any Proximal-ACCPM iteration, select� � � 
 � . Compute and store
�� � � �� ��� � !�� � ! � � � the standard start approximation

of �	�.���&� .
(2) Warm start: At each Proximal-ACCPM iteration � compute and store

����/��� � ����4� � !�� � ! �
�%� , approximate � �.��� � by
�

� � ��#� � � !�� � ! �
�%� and approximate ���
��� �� �
�
� by

�
��� ���� !��	�� ! �
� � � �

�
� , " � � !%$%$%$ ! ��


.
(3) Partial derivatives: Approximate partial derivatives

� ���.�!� � 
 � �
�

by:�
� 6 ���� �� � !�� �� ! � � � � �

�
� � �� � �� �4� � ! � � ! � � � 9 " � � !%$%$ $ ! ��
 $

(7)

(4) Accurate value of ���.� ' � : Once Proximal-ACCPM determines � ' as the best
encountered point, approximate ���.� ' � by an extra standard start C-GOLDSTEIN
call
�

� � ��� ! � � ! � ' � $
Note that at step 2, at each perturbed point �!� � � �

�
the warm start procedure uses

the steady state attained when computing the objective function at the central point�
� . This approach takes advantage of the fact that the distance between any of these
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perturbed points and the central point is
�

. For this reason, at a perturbed point, by
using the warm start procedure, the dynamical system recovers its steadiness after
a very short integration length. This phenomenon can be intuitively observed in
Fig. 3.

An alternative warm start approach could be as follows:

Parallel warm start algorithm

(1) Warm start initialization: Previous to any Proximal-ACCPM iteration, select��� � 
 � . Compute and store
���� 0
�
� ��	����� !�� � ! ��� � � �

�
� the standard start value

of �	�.��� � � �
�
� for

" � � !%$%$ $ ! ��
 (the vector � � being the null vector).
(2) Warm start: At each Proximal-ACCPM iteration � compute and store

���� 0
�
��� � ����4� � 0

� ! �
�
! �
� � � �

�
� and approximate ���.��� � � �

�
� by

�
� � ��#� � � 0

� !��
�
! �
� � � �

�
�" � � !%$%$ $ ! ��
 .

Steps 3 and 4 would be as in the central point warm start algorithm. Obviously
this approach is better suited for parallel computing than the previous one, since
now the 13 C-GOLDSTEIN calls at step 2 are independent. The main drawback of
the Parallel procedure is that it does not take advantage of the proximity between
the central and perturbed points when computing the approximation to the partial
derivatives (see next section). Since we are using a single processor PC, this is the
reason why we have chosen the central point warm start in this paper.

6.5 Selection of the integration length

The critical parameter in our method is the integration length in the C-GOLDSTEIN
model. A long integration will result in accurate results but long computations. A
too short integration will produce the opposite effect. Our aim is therefore to find
an integration length which balances both computation time and accuracy. The se-
lection of the integration lengths

�
�
!��
� and

�	�
� has been done in an heuristic way

by observing the evolution of the climate state. The evolution of the climate state
as a function of the time

��	��� !�� ! ��� , can be visualized by plotting the basin-averaged
deep-water temperature in the model Atlantic (below � � � � � m depth), ��� � � ! � ! ���

In Fig. 3, the left-hand plot corresponds to � � � � � � ���	����� !�� ! ���&� obtained by a
standard start C-GOLDSTEIN call with initial state � � and ��� as parameter vector.
The initial state � � is a globally uniform state with warm water throughout the
ocean, as used by (Edwards and Marsh, 2003). We observe that the temperature
stabilizes around

��
 $����
C after 5000 integration years, i.e., � "
	 ���	����� � ��� !�� ! ���&� �

���	����� ! � ��� � ! ��� � � ��
 $����
C.

The central plot corresponds to � � � � � � ��� � ���� !�� ! � � � obtained by a warm start
C-GOLDSTEIN call with initial state

���� � ��	� ��� ! � � � � ! ��� � and � � as parameter

14



0 2000 4000
12.0

12.5

13.0

13.5

14.0

14.5

15.0

15.5

16.0

16.5

17.0

Time

T
em

pe
ra

tu
re

Standard start

0 500 1000
12.0

12.5

13.0

13.5

14.0

14.5

15.0

15.5

16.0

16.5

17.0

Time

Warm start (a)

0 200 400
12.0

12.5

13.0

13.5

14.0

14.5

15.0

15.5

16.0

16.5

17.0

Time

Warm start (b)

Fig. 3. Deep-water temperature in the model Atlantic as a function of time
for various initial states. Left-hand side plot: The standard start needs a long
integration to attain a steady state. Central plot: The warm start needs a shorter
integration to attain a steady state. Right-hand side plot: The warm start at a
slightly perturbed point attains steadiness with a very short integration.

vector. We observe that, by using the warm start, the temperature stabilizes around��� $ � � �
C after an integration period of only 1000 years, i.e., � " 	 ��� � � �	� ���� !�� ! � � � �

���	� ���� ! � ��� � ! � � � � ��� $ � � �
C.

The right-hand plot corresponds to � � � � � ����� � �� � !�� ! � � � � � � � obtained by a
warm start C-GOLDSTEIN call with initial state

�� � � �� � �� � ! � � ��� ! � � � and � � � � � �
as parameter vector. We observe that, by using the warm start at a slightly per-
turbed point, the temperature stabilizes very quickly. In order to reduce the CPU
time, the goal is to take integration lengths

�
�
!��
� and

�	�
� as short as possible but

ensuring the steadiness of the C-GOLDSTEIN dynamical system in order to ob-
tain well approximated values of � and its partial derivatives. From our numer-
ical experience we have observed that good values for the integration times are:�
� � � � � � !�� � � � � � and

�	�
� � � � . Furthermore, C-GOLDSTEIN routinely cal-

culates a diagnostic parameter ROC which measures the root mean square rate of
change of ocean variables and thus provides a very strong measure of unsteadiness.
This can be used to guarantee the quality of our approximation to ���
��� � in step
2 of the central point algorithm. After computing

�
��� �� !�� ! �
� � , a low value of the

associated ROC ensures a good approximation to ���
��� � . In our implementation,
whenever the ROC has been greater than � $ � � , an extra integration has been per-
formed in order to double the integration time and thus improve the approximation
to ���.� � � . This last mechanism is seldom used and roughly speaking we can say
that by using this warm start setting, at each Proximal-ACCPM iteration we divide
by nearly 60 (

��� ; � � � � 
 � � � � � ��
 ; � � � ) the standard start integration time per
iteration, without noticeably increasing the number of Proximal-ACCPM iterations
required.
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Fig. 4. Proximal-ACCPM convergence.

7 Results

In this section we compare the results of our model calibration with those of the
ensemble Kalman filter (EnKF) method, both from the numerical perspective and
from the point of view of the resulting model climate.

7.1 Numerical performance

In our approach, we have used
� � � � � � to estimate the derivatives (see Eq.

(6)) and ����������� � � � � � for the Proximal-ACCPM stopping tolerance. As initial
point � � for Proximal-ACCPM we have taken the centre of the box domain 0
in equation (2). The initial state ��� is globally uniform as noted above. Programs
have been written in MATLAB 6.1 (Higham and Higham, 2000) and run on a PC
(Pentium-IV, 2.4 GHz, with 6 Gb of RAM) under the Linux operating system. C-
GOLDSTEIN is coded in Fortran 77.

Figure 4 shows the evolution of the Proximal-ACCPM upper and lower bounds
up to convergence after 33 iterations. In the case of a convex error function the
upper bound plot would be monotonically non-increasing, that is,

� �� � � �  �� for all
� . Here this is not the case due to the apparently mild non-convexity of � . As seen
in Section 6, Proximal-ACCPM may lift the current upper bound in order to cope
with the non-convex case.

Regarding the solution quality, Proximal-ACCPM finds a slightly lower func-
tion value of � $
	���
 � compared to � $�	�
�	�	 for the EnKF approach (see Tables 1-2).
Regarding the performance, the more reliable integration length (as opposed to the
CPU hours) was used to compare the two methods. Proximal-ACCPM converges
after 33 iterations, when the relative gap between the upper bound (objective func-
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Table 1
Performance. Note that the EnKF value corresponds to 10,000 years per en-
semble member and that the estimate referred to corresponds to the ensemble
mean, which may not be the lowest-error solution found.

Method Lowest error Integration length

EnKF 0.4944 540,000 years

Proximal-ACCPM 0.4896 47,000 years

tion) and the lower bound falls below the stopping threshold � ��������� (see Fig. 4).
The total number of integration years for Proximal-ACCPM after 33 iterations was:� � � � years for the warm start initialization, plus

� � ; � � � � � ��
 ; � � � for the
Proximal-ACCPM iterations (warm start), plus 700 integration years to improve
the ROC parameter in a few cases plus 5000 integration years to compute the exact
value of the error function at the optimal point. All in all, we needed 47000 inte-
gration years compared to around 54 ; � � ! � � � � � 	 � ! � ��� integration years for the
EnKF method, as reported in (Hargreaves et al., 2004). The overhead CPU times for
Proximal-ACCPM and the EnKF methods are both considered negligible compared
to the climate integration times. For the computer we have used, the reported inte-
gration lengths would correspond to estimated CPU times of 270.0 and 23.5 hours
for EnKF and Proximal-ACCPM methods, respectively. It should be noted that the
large amount of data processed in the EnKF method can lead to further computa-
tional overheads, but on the other hand the EnKF computation can be parallelised,
corresponding to a minimim integration time of 5 CPU hours per node across 54
nodes. In contrast to the results obtained by EnKF and Proximal-ACCPM, the latin
hypercube Monte Carlo method of (Edwards and Marsh, 2003), required 2,000,000
integration years but failed to locate any solutions with error less than 0.6000.

It is worth mentioning that it is common practice to test a parameter calibration
method by an identical twin test in which an arbitrary system state is used as arti-
ficial data and the calibration method attempts to determine what parameter values
were used to produce it. Indeed, the EnKF development for C-GOLDSTEIN fol-
lowed this approach, with (Annan et al., 2005) showing that the EnKF was able
to solve the identical twin problem in around � ; 
 ��� � years, where the ensemble
size � in the test was set to 54 (their Fig. 2) and (Hargreaves et al., 2004) showing
that with real data the integration cost increased to around � ; � � � ��� years (from
their Fig. 4). In the case of Proximal-ACCPM, we found that if the artificial data
were used as an initial state, the method was able to find the exact parameters used
to extremely high accuracy in only around 100 Proximal-ACCPM iterations. With
a very short integration period of two years, this gave a total integration time for
estimation of the 12 parameters of less than 3000 years. In other words, Proximal-
ACCPM was able to solve the identical twin test so efficiently that it was necessary
to proceed directly to the case with real data to have a meaningful assessment of
the method.
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Table 2
Estimated parameters.

Parameters Bounds Estimated parameters Units

Ocean Lower Upper EnKF Proximal-ACCPM

1 Wind-scale 1.0e+0 3.0e+0 1.6674e+0 1.1841e+0 -

2 Isopyc. diff. 3.0e+2 1.0e+4 4.1264e+3 5.5321e+3 m � s � �
3 Diapyc. diff. 2.0e ! 6 2.0e ! 4 1.8134e ! 5 3.8818e ! 5 m � s � �
4 Friction � � 5.0e ! 1 5.0e+0 3.4331e+0 4.9959e+0 days

Atmosphere

5
�

diff. amp. 1.0e+6 1.0e+7 3.7548e+6 2.5839e+6 m � s � �
6 � diff. 5.0e+4 5.0e+6 1.7447e+6 1.9337e+6 m � s � �
7

�
adv. coeff. 0.0e+0 1.0e+0 6.0357e ! 2 8.9163e ! 2 -

8 � adv. coeff. 0.0e+0 1.0e+0 1.3674e ! 1 1.4885e ! 2 -

9 Sea-ice diff. 5.0e+2 8.0e+3 6.2494e+3 7.9913e+3 m � s � �
10 FWF adjust. 0.0e+0 2.0e+0 8.9796e ! 1 1.0406e+0 -

11
�

diff. width 5.0e ! 1 2.0e+0 1.3071e+0 1.9920e+0 radians

12
�

diff. slope 0.0e+0 2.5e ! 1 6.8597e ! 2 2.3644e ! 1 -

7.2 Model climate

As expected from the decrease in mean error, the final state
��	�
� ' � of the opti-

misation procedure constitutes a significantly more realistic climate than the initial
guess

�� �
���&� . We do not discuss the model climate in detail because the final state
is similar to that obtained using the EnKF procedure and discussed in detail by
(Hargreaves et al., 2004). By way of illustration we show, in Fig. 5, the sea-surface
temperature (SST) field in the final state, along with the SST difference fields be-
tween this state and the initial guess, the EnKF solution, and the data. Changes of
several degrees are visible compared to the initial state, leading to broad regions
of low error compared to the data. Large systematic errors remain, however, par-
ticularly in the regions of the cold upwelling pools in the eastern tropical Pacific
and Atlantic and in the boundary current separation regions of the Gulf Stream
and Kuroshio. These regions are challenging even for much more computationally
expensive climate models. The EnKF solution has very similar SST and thus sim-
ilar systematic errors, which it is reasonable to assume are inherent to the model
dynamics. It is noteworthy that the method is able to find a minimum-error state
without difficulty, even when the optimal model climate is relatively far removed
from the observational target.
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Most intriguing is that the EnKF and Proximal-ACCPM solutions are not ex-
actly the same. Indeed there are substantial differences in most parameters, as in-
dicated in Table 2. According to the error estimate provided by the EnKF method
the parameter values obtained using Proximal-ACCPM are, on average, around two
standard deviations away from the mean obtained using the EnKF (see (Hargreaves
et al., 2004)). That the solutions are different is to be expected since, as noted above,
the EnKF estimate is constrained to remain relatively close to the initial estimate.
Furthermore, it was noted by (Hargreaves et al., 2004) that certain parameters are
only poorly constrained, in particular the parameter governing the behaviour of sea-
ice, for which no data constraint was applied. Sea-ice diffusivity in the Proximal-
ACCPM solution is very close to the imposed bound, and experience with both
methods suggests that larger values are preferred. The EnKF, however, penalises
solutions which are near to the bounds. Another relevant point is that (Hargreaves
et al., 2004) found certain parameters to be correlated, indicating possible redun-
dancy in the tuned parameter set, in particular the multiple parameters governing
atmospheric transport. Closer examination reveals that differences in atmospheric
transport appear to physically explain the differences in the modelled climate states.

We are thus left with two significantly different sets of “optimal” parameters
arising from different approaches to calibration but associated with very similar cli-
mate states. Remaining close to the original priors gives a better-posed mathemati-
cal problem, but means that the result depends on initial guesses for both the mean
and the variance of the parameter distributions, rather than simply on the imposed
extreme values. It must also be borne in mind, as shown by (Marsh et al., 2005), that
in certain regions of parameter space C-GOLDSTEIN exhibits multiple solutions
for fixed parameter values, corresponding to qualitatively different steady ocean
circulation states. By more devious choice of initialisation procedures, the model
has been found to possess up to 12 steady solutions for fixed parameters in some
regimes, mostly corresponding to qualitatively very similar states (J.Hargreaves
pers. comm.). Thus it is likely that a given method could produce different so-
lutions depending on the initial conditions and solution path. Another possibility,
which cannot be ruled out, is that the optimisation procedure itself could have mul-
tiple solutions, in other words, that multiple local minima of the cost function might
exist. This would be in line with the results of (Edwards and Marsh, 2003) where
the Monte-Carlo optimisation, effectively a global optimisation, while admittedly
undersampled, found both good and bad solutions almost throughout the range of
each parameter.

Whatever the root cause, the possible existence of different optimal solutions
using different methods or initial conditions indicates that, although great improve-
ments can be obtained in the fit of model to data and thus in the objectivity of the
model calibration process, it may be difficult to identify with confidence the glob-
ally optimal values for individual parameters. Climate model calibration should
thus be viewed as part of a continual process of improving knowledge of model
errors as a function of prior assumptions concerning model parameters.
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Fig. 5. Final sea-surface temperature (SST) field and SST difference fields in
Celcius. Upper left, the final state; upper right, final state minus initial state � � ;
lower left, final state minus EnKF solution; lower right, final state minus data.
Plots are in model grid coordinates.

8 Conclusions

In this paper, we have shown how oracle-based optimization can be effectively
used in the calibration of intermediate complexity climate models. In a fully devel-
oped example, the 12 principal transport and mixing parameters of the C-GOLDSTEIN
climate model have been estimated by using Proximal-ACCPM as the oracle-based
optimization tool. In terms of goodness-of-fit, we have obtained estimates of sim-
ilar quality to those obtained by an EnKF approach, but in around one tenth of
the total model integration time. Nevertheless, the two approaches cannot really
be compared since the EnKF approach also performs the estimate assessment. The
fact that the solution found by Proximal-ACCPM was well outside the estimated
error bounds provided by the EnKF warns that the results of model calibration
can depend on the initial assumptions concerning model parameters. Results may
also be subject to sensitivity to initial conditions, or redundancy in the process of
minimizing a simple scalar error function by tuning many, related parameters in
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a model with large systematic errors. Overall, the result is that it may be difficult
to identify with confidence the globally optimal values for individual parameters.
Nevertheless, optimisation is able to produce considerable improvements in model
performance and remove at least some of the subjectivity which plagues the model
development process. The oracle-based optimization approach used here is highly
efficient, simple to implement and generally applicable and could thus be useful in
calibrating other computationally demanding models based on temporal integration
(simulation), for which functional derivative information is not readily available.
Whether the approach could be successfully applied to more chaotic models, such
as eddy-resolving climate models, remains untested and uncertain. In (Annan and
Hargreaves, 2005) it is argued that pathological behaviour of even averaged statis-
tics in such cases handicaps any derivative-based method, although the derivative-
based 4DVar method is widely used for assimilation in eddying models over very
short integration periods.

Our contribution has been empirical. By using a well established optimization
tool, Proximal-ACCPM, we have performed a fast tuning of C-GOLDSTEIN, a
model of intermediate complexity. The keys for the fast tuning have been: (1)
The fast computation of the error function and approximated derivatives by ex-
ploiting the re-start procedure (warm start) in the C-GOLDSTEIN model. (2) The
rapid convergence and robust behaviour, particularly in respect of non-convexity,
of Proximal-ACCPM.

From the climate modelling point of view two refinements to the work described
here would be highly desirable, firstly the use of an error function which incorpo-
rates information from a variety of oceanic tracers representing different timescales,
and secondly developing the ability to tune two separate steady states of the model
to different data sets. This would make it possible to demand that a model sucess-
fully reproduces more than one climate state. An obvious example would be simul-
taneous tuning to glacial and interglacial states.
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