134 research outputs found

    Oxidised guanidinohydantoin (Ghox) and spiroiminodihydantoin (Sp) are major products of iron- and copper-mediated 8-oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2-deoxyguanosine oxidation

    Get PDF
    8-Oxo-7,8-dihydroguanine (8-oxoGua), an important biomarker of DNA damage in oxidatively generated stress, is highly reactive towards further oxidation. Much work has been carried out to investigate the oxidation products of 8-oxoGua by one-electron oxidants, singlet oxygen, and peroxynitrite. This report details for the first time, the iron- and copper-mediated Fenton oxidation of 8-oxoGua and 8-oxo-7,8-dihydro-29-deoxyguanosine (8-oxodGuo). Oxidised guanidinohydantoin (Ghox) was detected as the major product of oxidation of 8-oxoGua with iron or copper and hydrogen peroxide, both at pH 7 and pH 11. Oxaluric acid was identified as a final product of 8-oxoGua oxidation. 8-oxodGuo was subjected to oxidation under the same conditions as 8-oxoGua. However, dGhox was not generated. Instead, spiroiminodihydantoin (Sp) was detected as the major product for both iron and copper mediated oxidation at pH 7. It was proposed that the oxidation of 8-oxoGua was initiated by its one-electron oxidation by the metal species, which leads to the reactive intermediate 8-oxoGua?+, which readily undergoes further oxidation. The product of 8-oxoGua and 8-oxodGuo oxidation was determined by the 29-deoxyribose moiety of the 8-oxodGuo, not whether copper or iron was the metal involved in the oxidation

    Protective effect of carboxymethyl-glucan (CM-G) against DNA damage in patients with advanced prostate cancer

    Get PDF
    Carboxymethyl-glucan (CM-G) is a soluble derivative from Saccharomyces cerevisiae (1 → 3)(1 → 6)-β-D-glucan. The protective efficiency of CM-G against DNA damage in cells from patients with advanced prostate cancer (PCa), and undergoing Androgen Deprivation Therapy (ADT), was evaluated. DNA damage scores were obtained by the comet assay, both before and after treatment with CM-G. The reduction in DNA damage, ranging from 18% to 87%, with an average of 59%, was not related to the increased number of leukocytes in peripheral blood. The results demonstrate for the first time the protective effect of CM-G against DNA damage in patients with advanced PCa. Among smokers, three presented the highest reduction in DNA damage after treatment with CM-G. There was no observable relationship between DNA damage scores before and after treatment, and age, alcoholism and radiotherapy

    Reduced repair of 8-hydroxyguanine in the human breast cancer cell line, HCC1937

    Get PDF
    BACKGROUND: Breast cancer is the second leading cause of cancer deaths in women in the United States. Although the causes of this disease are incompletely understood, oxidative DNA damage is presumed to play a critical role in breast carcinogenesis. A common oxidatively induced DNA lesion is 8-hydroxyguanine (8-OH-Gua), which has been implicated in carcinogenesis. The aim of this study was to investigate the ability of HCC1937 and MCF-7 breast cancer cell lines to repair 8-OH-Gua relative to a nonmalignant human mammary epithelial cell line, AG11134. METHODS: We used oligonucleotide incision assay to analyze the ability of the two breast cancer cell lines to incise 8-OH-Gua relative to the control cell line. Liquid chromatography/mass spectrometry (LC/MS) was used to measure the levels of 8-OH-Gua as its nucleoside, 8-OH-dG in the cell lines after exposure to H(2)O(2 )followed by 30 min repair period. Protein expression levels were determined by Western blot analysis, while the hOGG1 mRNA levels were analyzed by RT-PCR. Complementation of hOGG1 activity in HCC1937 cells was assessed by addition of the purified protein in the incision assay, and in vivo by transfection of pFlagCMV-4-hOGG1. Clonogenic survival assay was used to determine sensitivity after H(2)O(2)-mediated oxidative stress. RESULTS: We show that the HCC1937 breast cancer cells have diminished ability to incise 8-OH-Gua and they accumulate higher levels of 8-OH-dG in the nuclear genome after H(2)O(2 )treatment despite a 30 min repair period when compared to the nonmalignant mammary cells. The defective incision of 8-OH-Gua was consistent with expression of undetectable amounts of hOGG1 in HCC1937 cells. The reduced incision activity was significantly stimulated by addition of purified hOGG1. Furthermore, transfection of pFlagCMV-4-hOGG1 in HCC1937 cells resulted in enhanced incision of 8-OH-Gua. HCC1937 cells are more sensitive to high levels of H(2)O(2 )and have up-regulated SOD1 and SOD2. CONCLUSION: This study provides evidence for inefficient repair of 8-OH-Gua in HCC1937 breast cancer cell line and directly implicates hOGG1 in this defect

    Genetic Variants in Nuclear-Encoded Mitochondrial Genes Influence AIDS Progression

    Get PDF
    Background: The human mitochondrial genome includes only 13 coding genes while nuclear-encoded genes account for 99% of proteins responsible for mitochondrial morphology, redox regulation, and energetics. Mitochondrial pathogenesis occurs in HIV patients and genetically, mitochondrial DNA haplogroups with presumed functional differences have been associated with differential AIDS progression. Methodology/Principal Findings: Here we explore whether single nucleotide polymorphisms (SNPs) within 904 of the estimated 1,500 genes that specify nuclear-encoded mitochondrial proteins (NEMPs) influence AIDS progression among HIV-1 infected patients. We examined NEMPs for association with the rate of AIDS progression using genotypes generated by an Affymetrix 6.0 genotyping array of 1,455 European American patients from five US AIDS cohorts. Successfully genotyped SNPs gave 50% or better haplotype coverage for 679 of known NEMP genes. With a Bonferroni adjustment for the number of genes and tests examined, multiple SNPs within two NEMP genes showed significant association with AIDS progression: acyl-CoA synthetase medium-chain family member 4 (ACSM4) on chromosome 12 and peroxisomal D3,D2-enoyl- CoA isomerase (PECI) on chromosome 6. Conclusions: Our previous studies on mitochondrial DNA showed that European haplogroups with presumed functional differences were associated with AIDS progression and HAART mediated adverse events. The modest influences of nuclearencoded mitochondrial genes found in the current study add support to the idea that mitochondrial function plays a role in AIDS pathogenesis

    MTH1 deficiency selectively increases non-cytotoxic oxidative DNA damage in lung cancer cells: more bad news than good?

    Get PDF
    Representative images of “Comets” and the corresponding intensity profiles, showing (i) ~ 5% Tail DNA damage, typical of the NSCLC cells treated with no siRNA or scramble siRNA, and analysed by regular Fpg-modified alkaline comet assay (0.8 U Fpg/gel); and (ii) comets showing ~ 10% tail DNA, typical of the NSCLC cells treated with MTH1 siRNA. Superimposed on the Comet images are the image analysis software (Komet 5.5, Andor Technology) determined boundaries demarcating the ‘Comet head’ (pink circle) and ‘tail extent’ (vertical orange line) (Barber RC, Hickenbotham P, Hatch T, Kelly D, Topchiy N, Almeida GM, et al. Radiation-induced transgenerational alterations in genome stability and DNA damage. Oncogene. 2006;25(56):7336–7342). % tail DNA = 100 - % head DNA; % head DNA = (integrated optical head intensity / (integrated optical head intensity + integrated optical tail intensity)) × 100. (PDF 1431 kb

    Highly conserved elements discovered in vertebrates are present in non-syntenic loci of tunicates, act as enhancers and can be transcribed during development

    Get PDF
    Co-option of cis-regulatory modules has been suggested as a mechanism for the evolution of expression sites during development. However, the extent and mechanisms involved in mobilization of cisregulatory modules remains elusive. To trace the history of non-coding elements, which may represent candidate ancestral cis-regulatory modules affirmed during chordate evolution, we have searched for conserved elements in tunicate and vertebrate (Olfactores) genomes. We identified, for the first time, 183 non-coding sequences that are highly conserved between the two groups. Our results show that all but one element are conserved in non-syntenic regions between vertebrate and tunicate genomes, while being syntenic among vertebrates. Nevertheless, in all the groups, they are significantly associated with transcription factors showing specific functions fundamental to animal development, such as multicellular organism development and sequence-specific DNA binding. The majority of these regions map onto ultraconserved elements and we demonstrate that they can act as functional enhancers within the organism of origin, as well as in cross-transgenesis experiments, and that they are transcribed in extant species of Olfactores. We refer to the elements as 'Olfactores conserved non-coding elements'. \uc2\ua9 The Author(s) 2013. Published by Oxford University Press

    Biomonitoring of complex occupational exposures to carcinogens: The case of sewage workers in Paris

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sewage workers provide an essential service in the protection of public and environmental health. However, they are exposed to varied mixtures of chemicals; some are known or suspected to be genotoxics or carcinogens. Thus, trying to relate adverse outcomes to single toxicant is inappropriate. We aim to investigate if sewage workers are at increased carcinogenic risk as evaluated by biomarkers of exposure and early biological effects.</p> <p>Methods/design</p> <p>This cross sectional study will compare exposed sewage workers to non-exposed office workers. Both are voluntaries from Paris municipality, males, aged (20–60) years, non-smokers since at least six months, with no history of chronic or recent illness, and have similar socioeconomic status. After at least 3 days of consecutive work, blood sample and a 24-hour urine will be collected. A caffeine test will be performed, by administering coffee and collecting urines three hours after. Subjects will fill in self-administered questionnaires; one covering the professional and lifestyle habits while the a second one is alimentary. The blood sample will be used to assess DNA adducts in peripheral lymphocytes. The 24-hour urine to assess urinary 8-oxo-7, 8-dihydro-2'-deoxy-Guanosine (8-oxo-dG), and the in vitro genotoxicity tests (comet and micronucleus) using HeLa S3 or HepG2 cells. In parallel, occupational air sampling will be conducted for some Polycyclic Aromatic Hydrocarbons and Volatile Organic Compounds. A weekly sampling chronology at the offices of occupational medicine in Paris city during the regular medical visits will be followed. This protocol has been accepted by the French Est III Ethical Comitee with the number 2007-A00685-48.</p> <p>Discussion</p> <p>Biomarkers of exposure and of early biological effects may help overcome the limitations of environmental exposure assessment in very complex occupational or environmental settings.</p
    corecore