77 research outputs found

    Association between Peripheral Blood Inflammatory Markers, Endothelial Dysfunction Markers, and Depression

    Get PDF
    The authors present an analysis of current research and their own data on the link between endothelial dysfunction (ED) and the severity of depression in middle-aged patients with cerebral microangiopathy. Levels of peripheral inflammatory and endothelial dysfunction markers were measured using the enzyme-linked immunosorbent assay (ELISA). The results of the comparative and correlation analyses showed a statistically significant correlation between the severity of depression and increased levels of inflammatory, as well as endothelial dysfunction

    Two pathways of proton transfer reaction to (triphos)Cu(η1-BH4) via a dihydrogen bond [triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane]

    Get PDF
    The interaction of alcohols of variable strength with the copper(i) borohydride complex (triphos)Cu(η1-BH4) results in a great variety of DHB complexes which encompass different mechanisms involving M–H and E–H bond (E = B, O) activation steps

    A Comparison of the Dynamics of S100B, S100A1, and S100A6 mRNA Expression in Hippocampal CA1 Area of Rats during Long-Term Potentiation and after Low-Frequency Stimulation

    Get PDF
    The interest in tissue- and cell-specific S100 proteins physiological roles in the brain remains high. However, necessary experimental data for the assessment of their dynamics in one of the most important brain activities, its plasticity, is not sufficient. We studied the expression of S100B, S100A1, and S100A6 mRNA in the subfield CA1 of rat hippocampal slices after tetanic and low-frequency stimulation by real-time PCR. Within 30 min after tetanization, a 2–4 fold increase of the S100B mRNA level was observed as compared to the control (intact slices) or to low-frequency stimulation. Subsequently, the S100B mRNA content gradually returned to baseline. The amount of S100A1 mRNA gradually increased during first hour and maintained at the achieved level in the course of second hour after tetanization. The level of S100A6 mRNA did not change following tetanization or low-frequency stimulation

    Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

    Get PDF
    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced

    Agriculture in the Face of Changing Markets, Institutions and Policies: Challenges and Strategies

    Get PDF
    Since the late 1980s, agriculture in Central and Eastern European Countries (CEECs) has been under considerable adjustment pressure due to changing political, economic and institutional environments. These changes have been linked to the transition process, as well as the ongoing integration into the European Union and the world market. Reduced subsidies, increased environmental and food quality demands, as well as structural changes in the supply, processing and food retailing sector call for major structural adjustments and the improvement of farmersâ managerial abilities. Though such changes always carry significant threats to farms, they also offer new opportunities for the farms' entrepreneurial engagement. Upcoming changes in the agricultural environment and their possible consequences for farm structures across Europe are thus still timely subjects. The objective of the IAMO Forum 2006 is to contribute to the success of agriculture in the CEECs, as well as their neighboring countries, in todayâs increasingly competitive environment. Concrete questions the conference focuses on are: What are the most suitable farm organizations, cooperative arrangements and contractual forms? How to improve efficiency and productivity? Where do market niches lie and what are the new product demands? This book contains 33 invited and selected contributions. These papers will be presented at the IAMO Forum 2006 in order to offer a platform for scientists, practitioners and policy-makers to discuss challenges and potential strategies at the farm, value chain, rural society and policy levels in order to cope with the upcoming challenges. IAMO Forum 2006, as well as this book, would not have been possible without the engagement of many people and institutions. We thank the authors of the submitted abstracts and papers, as well as the referees, for their evaluation of the abstracts from which the papers were selected. In particular, we would like to express our thanks to OLIVER JUNGKLAUS, GABRIELE MEWES, KLAUS REINSBERG and ANGELA SCHOLZ, who significantly contributed to the organization of the Forum. Furthermore, our thanks goes to SILKE SCHARF for her work on the layout and editing support of this book, and to JIM CURTISS, JAMIE BULLOCH, and DÃNALL Ã MEARÃIN for their English proof-reading. As experience from previous years documents, the course of the IAMO Forum continues to profit from the support and engagement of the IAMO administration, which we gratefully acknowledge. Last but not least, we are very grateful to the Robert Bosch Foundation, the Federal Ministry of Nutrition, Agriculture and Consumer Protection (BMELV), the German Research Foundation (DFG), the Haniel Foundation and the Leibniz Institute of Agricultural Development in Central and Eastern Europe (IAMO) for their respective financial support.Agribusiness, Community/Rural/Urban Development, Farm Management, Industrial Organization, International Development, Labor and Human Capital, Land Economics/Use, Productivity Analysis,

    Sequencing by Cyclic Ligation and Cleavage (CycLiC) directly on a microarray captured template

    Get PDF
    Next generation sequencing methods that can be applied to both the resequencing of whole genomes and to the selective resequencing of specific parts of genomes are needed. We describe (i) a massively scalable biochemistry, Cyclical Ligation and Cleavage (CycLiC) for contiguous base sequencing and (ii) apply it directly to a template captured on a microarray. CycLiC uses four color-coded DNA/RNA chimeric oligonucleotide libraries (OL) to extend a primer, a base at a time, along a template. The cycles comprise the steps: (i) ligation of OLs, (ii) identification of extended base by label detection, and (iii) cleavage to remove label/terminator and undetermined bases. For proof-of-principle, we show that the method conforms to design and that we can read contiguous bases of sequence correctly from a template captured by hybridization from solution to a microarray probe. The method is amenable to massive scale-up, miniaturization and automation. Implementation on a microarray format offers the potential for both selection and sequencing of a large number of genomic regions on a single platform. Because the method uses commonly available reagents it can be developed further by a community of users

    Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment

    Get PDF
    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.Peer reviewe

    The Spatial Homeostasis Hypothesis

    No full text
    From studies on the effects of “high dilutions” on organisms, it was found that their administration induces a delicate physiological (molecular and cellular) response. Occasionally, physiological reactions can become atypical (pathological) individual reactions. To resolve this paradox, the spatial homeostasis hypothesis has been proposed. It considers pathological processes as tools used by living systems, in order to retain their spatial integrity (symmetry), allowing them to properly reflect the geometry of the surrounding world and thus, to be a part of the evolutionary process. This article addresses an interdisciplinary subject and is aimed at natural scientists (physicists, chemists, and biologists) as well as philosophers

    The Spatial Homeostasis Hypothesis

    No full text
    From studies on the effects of “high dilutions” on organisms, it was found that their administration induces a delicate physiological (molecular and cellular) response. Occasionally, physiological reactions can become atypical (pathological) individual reactions. To resolve this paradox, the spatial homeostasis hypothesis has been proposed. It considers pathological processes as tools used by living systems, in order to retain their spatial integrity (symmetry), allowing them to properly reflect the geometry of the surrounding world and thus, to be a part of the evolutionary process. This article addresses an interdisciplinary subject and is aimed at natural scientists (physicists, chemists, and biologists) as well as philosophers
    corecore