2,172 research outputs found

    Stress concentrations in screw threads

    Get PDF
    The concept of stress concentration in screw threads was defined using the sheer transfer rate as the fundamental quantity. The stress concentration is plotted for a fixed geometry. The Heywood equation was used to generate the basic plots and NASTRAN was used to extend the analysis to the case both where flanks of an individual thread tooth are in contact. The case where a finite axial stress is superimposed is discussed

    Implementation of a trapezoidal ring element in NASTRAN for elastic-plastic analysis

    Get PDF
    The explicit expressions for an elastic-plastic trapezoidal ring element are presented and implemented in NASTRAN computer program. The material is assumed to obey the von Mises' yield criterion, isotropic hardening rule and the Prandtl-Reuss flow relations. For the purpose of demonstration, two elastic-plastic problems are solved and compared with previous results. The first is a plane-strain tube under uniform internal pressure and the second, a finite-length tube loaded over part of its inner surface. A very good agreement was found in both test problems

    Experimental determination of turbulence in a GH2-GOX rocket combustion chamber

    Get PDF
    The intensity of turbulence and the Lagrangian correlation coefficient for a gaseous rocket combustion chamber have been determined from the experimental measurements of the tracer gas diffusion. A combination of Taylor's turbulent diffusion theory and Spalding's numerical method for solving the conservation equations of fluid mechanics was used to calculate these quantities. Taylor's theory was extended to consider the inhomogeneity of the turbulence field in the axial direction of the combustion chamber. An exponential function was used to represent the Lagrangian correlation coefficient. The results indicate that the maximum value of the intensity of turbulence is about 15% and the Lagrangian correlation coefficient drops to about 0.12 in one inch of the chamber length

    Turbulence in a gaseous hydrogen-liquid oxygen rocket combustion chamber

    Get PDF
    The intensity of turbulence and the Lagrangian correlation coefficient for a LOX-GH2 rocket combustion chamber was determined from experimental measurements of tracer gas diffusion. A combination of Taylor's turbulent diffusion theory and a numerical method for solving the conservation equations of fluid mechanics was used to calculate these quantities. Taylor's theory was extended to consider the inhomogeneity of the turbulence field in the axial direction of the combustion chamber, and an exponential function was used to represent the Lagrangian correlation coefficient. The results indicate that the value of the intensity of turbulence reaches a maximum of 14% at a location about 7" downstream from the injector. The Lagrangian correlation coefficient associated with this value is given by the above exponential expression where alpha = 10,000/sec

    Families of Quintic Calabi-Yau 3-Folds with Discrete Symmetries

    Get PDF
    At special loci in their moduli spaces, Calabi-Yau manifolds are endowed with discrete symmetries. Over the years, such spaces have been intensely studied and have found a variety of important applications. As string compactifications they are phenomenologically favored, and considerably simplify many important calculations. Mathematically, they provided the framework for the first construction of mirror manifolds, and the resulting rational curve counts. Thus, it is of significant interest to investigate such manifolds further. In this paper, we consider several unexplored loci within familiar families of Calabi-Yau hypersurfaces that have large but unexpected discrete symmetry groups. By deriving, correcting, and generalizing a technique similar to that of Candelas, de la Ossa and Rodriguez-Villegas, we find a calculationally tractable means of finding the Picard-Fuchs equations satisfied by the periods of all 3-forms in these families. To provide a modest point of comparison, we then briefly investigate the relation between the size of the symmetry group along these loci and the number of nonzero Yukawa couplings. We include an introductory exposition of the mathematics involved, intended to be accessible to physicists, in order to make the discussion self-contained.Comment: 54 pages, 3 figure

    Two Kerr black holes with axisymmetric spins: An improved Newtonian model for the head-on collision and gravitational radiation

    Get PDF
    We present a semi-analytical approach to the interaction of two (originally) Kerr black holes through a head-on collision process. An expression for the rate of emission of gravitational radiation is derived from an exact solution to the Einstein's field equations. The total amount of gravitational radiation emitted in the process is calculated and compared to current numerical investigations. We find that the spin-spin interaction increases the emission of gravitational wave energy up to 0.2% of the total rest mass. We discuss also the possibility of spin-exchange between the holes.Comment: 8 pages, RevTeX, 2 figures, psbox macro include

    Temporomandibular joint inflammation activates glial and immune cells in both the trigeminal ganglia and in the spinal trigeminal nucleus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glial cells have been shown to directly participate to the genesis and maintenance of chronic pain in both the sensory ganglia and the central nervous system (CNS). Indeed, glial cell activation has been reported in both the dorsal root ganglia and the spinal cord following injury or inflammation of the sciatic nerve, but no data are currently available in animal models of trigeminal sensitization. Therefore, in the present study, we evaluated glial cell activation in the trigeminal-spinal system following injection of the Complete Freund's Adjuvant (CFA) into the temporomandibular joint, which generates inflammatory pain and trigeminal hypersensitivity.</p> <p>Results</p> <p>CFA-injected animals showed ipsilateral mechanical allodynia and temporomandibular joint edema, accompanied in the trigeminal ganglion by a strong increase in the number of GFAP-positive satellite glial cells encircling neurons and by the activation of resident macrophages. Seventy-two hours after CFA injection, activated microglial cells were observed in the ipsilateral trigeminal subnucleus caudalis and in the cervical dorsal horn, with a significant up-regulation of Iba1 immunoreactivity, but no signs of reactive astrogliosis were detected in the same areas. Since the purinergic system has been implicated in the activation of microglial cells during neuropathic pain, we have also evaluated the expression of the microglial-specific P2Y<sub>12 </sub>receptor subtype. No upregulation of this receptor was detected following induction of TMJ inflammation, suggesting that any possible role of P2Y<sub>12 </sub>in this paradigm of inflammatory pain does not involve changes in receptor expression.</p> <p>Conclusions</p> <p>Our data indicate that specific glial cell populations become activated in both the trigeminal ganglia and the CNS following induction of temporomandibular joint inflammation, and suggest that they might represent innovative targets for controlling pain during trigeminal nerve sensitization.</p

    Superfluid phases of the three-species fermion gas

    Full text link
    We discuss the zero temperature phase diagram of a dilute gas with three fermionic species. We make use of solvable limits to conjecture the behavior of the system in the "unitary" regions. The physics of the Thomas-Efimov effect plays a role in these considerations. We find a rich phase diagram with superfluid, gapless superfluid and inhomogeneous phases with different symmetry breaking patterns. We then discuss one particular possible experimental implementation in a system of ^6Li atoms and the possible phases arising in this system as an external magnetic field is varied across three overlaping Feshbach resonances. We also suggest how to experimentally distinguish the different phases.Comment: 4 pages, 1 figure, typos corrected and references adde

    Shift of the molecular bound state threshold in dense ultracold Fermi gases with Feshbach resonance

    Full text link
    We consider a dense ultracold Fermi gas in the presence of a Feshbach resonance. We investigate how the treshold for bound state formation, which is just at the Feshbach resonance for a dilute gas, is modified due to the presence of the Fermi sea. We make use of a preceding framework of handling this many-body problem. We restrict ourselves to the simple case where the chemical potential Ό \mu is negative, which allows us to cover in particular the classical limit where the effect is seen to disappear. We show that, within a simple approach where basically only the effect of Pauli exclusion is included, the Fermi sea produces a large shift of the threshold, which is of order of the width of the Feshbach resonance. This is in agreement with very recent experimental findings.Comment: one reference adde
    • 

    corecore