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ABSTRACT

The intensity of turbulence and the Lagrangian correlation

coefficient for a gaseous rocket combustion chamber have been

determined from the experimental measurements of the tracer gas

diffusion. A combination of Taylor's turbulent diffusion theory

and Spalding's numerical method for solving-the conservation equa-

tions of fluid mechanics was used to calculate these quantities.

Taylor's theory was extended to consider the inhomogeneity of the

turbulence field in the axial direction of the combustion chamber.

An exponential function was used to represent the Lagrangian cor-

relation coefficient.

The results indicate that the maximum value of the intensity

of turbulence is about 15% and the Lagrangian correlation coef-

ficient drops to about 0.12 in one inch of the chamber length.
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SUMMARY

The intensity of turbulence and the Lagrangian correlation

coefficient in a gaseous rocket combustion chamber have been de-

termined experimentally using a small rocket engine operated at a

nominal chamber pressure of 150 psia. The experimental method

consisted of injecting a tracer gas at a point along the chamber

centerline while taking samples along a diameter at a downstream

station. Three sampling stations were investigated. Several in-

jection points were used for each of the sampling stations.

The gas samples were analyzed using a combination of weighing,

Orsat analyzer and gas chromatography to determine the tracer gas

concentration profiles. The turbulent parameters were then calcu-

lated from the tracer gas concentration data using a combination of

G.I. Taylor's turbulent diffusion theory and D.B. Spalding's numeri-

cal procedure for solving the conservation equations of fluid mechanics.

Taylor's theory was extended to consider the inhomogeneity of the

turbulence field in the axial direction of the combustion chamber. The

Lagrangian correlation coefficient was represented by an exponential

function of the form e where T is the difference of the dispersion

times of a fluid particle and a is a constant.

The results indicate that the values of the intensity of turbu-

lence vary from a maximum of approximately 15% near the injector to

4% at the nozzle entrance. The Lagrangian correlation coefficient

drops to 0.12 in one inch of the chamber length.
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I. INTRODUCTION

Turbulent mixing is one of the most important physical processes

occurring in a gaseous rocket combustion chamber. It influences the

combustion process and therefore the performance of the rocket engine.

In the theory of turbulent flow, the turbulent mixing of gases is quan-

titatively expressed in terms of the intensity of turbulence and the

Lagrangian correlation coefficient. At present there are very little

data available regarding these quantities, and only two previous

attempts have been made to experimentally measure the intensity of

turbulence under the actual conditions of a rocket combustion chamber.

Hersch(1) experimentally determined the intensity of turbulence

in a two-demensional hydrogen-liquid oxygen rocket combustion chamber

from the measurements of the diffusion of a photographically visible

tracer material. Hersch made the assumption that the turbulence field

was homogeneous and the Lagrangian correlation coefficient was unity.

The intensity of turbulence was calculated from the tracer diffusion

data using the equations developed by Bittker(2)

O'Hara et al. (3 ) investigated the intensity of turbulence in a

cylindrical liquid oxygen-heptane rocket engine. Their method con-

sisted of experimentally measuring the diffusion of the helium tracer

gas. The intensity of turbulence and the Lagrangian correlation co-

efficient were calculated from the diffusion measurements using a

combination of Taylor's turbulent diffusion theory and the Fick

diffusion equation. In the analysis, the turbulence field was assumed

2



to be isotropic throughout the combustion chamber and homogeneous

only in the radial and circumferential directions, but not in the

axial direction. The Lagrangian correlation coefficient was assumed

to be an exponential function of the dispersion time.

The objective of the present work is to investigate the inten-

sity of turbulence and the Lagrangian correlation coefficient in a

gaseous oxygen (GOX)-gaseous hydrogen (GH2 ) rocket combustion chamber.

These quantities were experimentally determined from tracer gas dif-

fusion measurements similar to that used by O'Hara et al. A combination

of Taylor's turbulent diffusion theory and Spalding's (5 ) numerical pro-

cedure for solving the conservation equations of fluid mechanics was

used to calculate the intensity of turbulence and the Lagrangian cor-

relation coefficient.
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II. EXPERIMENT

(1) Rocket Engine

A small rocket engine using gaseous oxygen and gaseous hydrogen

operating at a nominal chamber pressure of 150 psia was used in the

experiment (see Figure 1). The propellents were injected in the form

of co-axial jets from seven ports on the injector. Helium was used as

the tracer gas and could be injected at various points along the center

line of the combustion chamber. A probe passing across the chamber

along a diameter was used to withdraw gas samples. This probe contain-

ing six sample ports could be moved laterally across the chamber or

rotated circumferentially about the chamber centerline. Further, the

sample probe could be placed at several longitudinal stations.

(2) Experimental Procedure

An automatic timing device was used to fire the rocket engine and

take samples. About 1 1/2 seconds were required for the engine to

reach equilibrium. During this time the sample lines were vented to

the atmosphere. The helium tracer gas was injected during start-up so

that it would also reach an equilibrium condition. Samples were with-

drawn for about one second. The samples were collected in sample

bottles for later analysis.
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(3) Analysis of Sample

A method combining weighing, absorption and gas chromatography

was used to analyze each sample containing water (H20), oxygen (02),

hydrogen (H2 ) and helium (He).

More than 90% by weight of the sample was water which could

not be determined either by absorption or by gas chromatography.

Therefore the sample bottle was weighed before the analysis, and

again after the analysis was completed and the sample bottle was

evacuated by a vacuum pump, so that the total weight of the sample

could be determined.

Before the analysis was to begin, the sample bottle was charged

with argon (Ar)to a pressure of 20 psig at the room temperature. With

the pressure and temperature of the sample known, the weights of its

components could be easily determined later from the results of the

analysis.

The amount of oxygen and most of the hydrogen were measured by

selective absorption using an Orsat analyzer. The absorption method

was used because it was well suited for analyzing these gases in

large concentrations. Also, oxygen and hydrogen tend to contaminate

the chromatographic column.

The remaining sample which contained argon, helium and a small

amount of hydrogen was analyzed using gas chromatography to determine

the concentration of helium and hydrogen in a manner similar to that

(6)
given by Villalobos and Nuss A Linde 5A molecular sieve column

was used with argon as the carrier gas.
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(4) Experimental Data

Gas samples were taken from three longitudinal stations along

the combustion chamber. For each of these stations a series of helium

injection points along the chamber centerline were investigated.

Further, two circumferential angles of the sample probe with re-

spect to the outer propellant injectors were used.

Three of the many helium concentration profiles are shown in

Figure 2. The experimental data are scattered. The scattering is

believed due to an instability of the flow in the combustion chamber.

Many researchers (7 ) of turbulence have shown that the distribution

of the helium concentration downstream from a point source in a

turbulent flow is Gassian. Therefore the experimental data were

assumed to obey the Gausian distribution:
2/2 -

-r / 2 (1)
mle = mHeO e r

whereyn is the helium concentration at r = 0, and r is the mean
flHe ,0

square dispersion radius. The method of least squares was used to

obtain the best fit of the experimental data to Equation 1. The

curves in Figure 2 show the results of the curve fitting.

It is noted in Figures 2[a] and 2[b] that the values of r com-

pare closely with each other. This shows that the helium concentration

does not vary significantly with the circumferential angles of the

sample probe and the assumption of the circumferential homogeneity

of turbulence in the combustion chamber is satisfactory.
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The values of r2 as a function of the distance between the helium

injection point and the sampling station are plotted in Figure 3 for

the three sampling stations investigated. These results were used to

determine the intensity of turbulence and Lagrangian correlation co-

efficient.
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III. ANALYSIS OF THE EXPERIMENTAL RESULTS

(1) Equations of the Turbulent Diffusion

In analyzing the turbulent diffusion in a flow field, G.I. Taylor

used the Lagrangian approach by considering the path of a marked fluid

particle during its motion through the flow field, and developed an

equation relating the displacement of the particle to the turbulent

velocity. This formulation was based on the assumption that the turbu-

lence was isotropic and homogeneous throughout the flow field.

For the present work, Taylor's turbulent diffusion theory was em-

ployed to analyze the turbulent diffusion in the combustion chamber.

However, the original assumption was extended to consider that the tur-

bulence field was inhomogeneous in the axial direction. Based on this

assumption, the equation for the mean square dispersion radius, r , in

the cylindrical coordinates can be written as

r2 4 d ' R b (2) / (t / 2 (2)
r = 4 dt' ( 1 t") dt" (2)

where t' and t" are two dispersion times of the same fluid particle

and t = t"-t'.

The Lagrangian correlation coefficient, RL(T), in Equation 2 is

defined as

,2 ,
RL v (t' )v' (t") (3)

In order to solve Equation 2, it is necessary that the Lagrangian

14



correlation coefficient should be represented by a suitable function.

Measurements of turbulent flows by many researchers (7 ) have shown

that the Lagrangian correlation coefficient can be roughly represented

by an exponential function. In particular, Taylor also used an expon-

ential function in his formulation. For the present work, the Lagrangian

correlation coefficient was approximated by the form:

R L(t) e (4)

where a is a constant.

The variables r , RL, and in Equation 2 are functions of the
v

dispersion time. Since the flow in the combustion chamber is considered

to be steady, the dispersion time t required for a fluid particle to

travel an axial distance from the point of release, zI, to any point of

interest, z, is related to the axial coordinate by the expression:

t - dz

zi(z) (5)

zI

where u is the mean axial flow velocity. Therefore these variables are

also a function of z.

The mean axial flow velocity was not measured in the experiment, but

was determined by an analytical method.

(2) Analytical Determination of the Mean Axial Flow Velocity

Since there are seven co-axial propellant injection elements in the

combustion chamber, the flow field is three-dimensional. Mathematically

it would be very difficult to solve such a three-dimensional problem. To

simplify the problem, the turbulent mixing of one chemically reacting,

15



co-axial jet is considered. This co-axial jet is assumed to be sur-

rounded by an imaginary, cylindrical enclosure whose cross-sectional

area is 1/7 of that of the actual combustion chamber. Thus the problem

becomes an axisymmetric one.

To solve this problem the numerical procedure for solving the con-

(5)
servation equations developed by D.B. Spalding et al. was used. The

uniqueness of Spalding's approach lies in the transformation of the

conservation equations into a standard form which is a nonlinear partial

differential equation of the elliptic type. This standard equation is

then solved by a finite difference procedure, using the Gauss-Seidel

iterative technique.

As presented in Reference 5, the standard equation in the cylin-

drical coordinates takes the form

D 3r ar z a z (7)a z (7)

S b (c) + d =+d 0

where # is the particular dependent variable, and a, b, c and d are

coefficients which depend on geometric variables, material properties

and other dependent variables.

The important considerations inherent to the computational results

are the modeling of turbulent viscosity and combustion. For the flow

in a clyindrical chamber, spalding suggests that the effective viscosity,

16



Peff' may be expressed in the form

2/3 -1/3 2/3 2 2 1/3
eff = kd 1 p (hF VF +  0 V0 (8)

A value of k equal to 0.012 was found suitable for the present work.

The validity of this viscosity model was checked by comparing the ex-

perimental and calculated tracer gas concentration data. A method for

calculating the tracer gas concentration will be discussed later.

In modeling the combustion, the combustion process is assumed to

follow the simple chemical reaction

2H2 + 02 2H2 0

The reaction rate is assumed to be infinite, i.e., as soon as fuel and

oxidizer come into contact, they react instantaneously at the stoichio-

matic mixture ratio.

The numerical solution of the governing equations for predicting

the flow field of the single co-axial jet in the imaginary enclosure

was obtained in terms of the vorticity w, a stream function P, and the

mixture fraction f. A computer program for calculating these variables

is presented in Reference 5. From the mixture fraction the distribution

of the density p was computed. The mean axial flow velocity was obtained

from the definition of the stream function by using the approximation

-= A (9)
P r Arave

where Pave is the arithmetic average of the density across the radius

of the enclosure at an axial position, A4 is the difference between

the value of the stream function at the enclosure and that at the axis

of symmetry, and Ar is equal to the radius of the enclosure.

17
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The mean axial flow velocity as a function of the axial chamber dis-

tance is plotted in Figure 4.

(3) Determination of the Turbulent Parameters

From the experimental results of the mean square dispersion radii,

Equation 2 can now be solved for the root mean square (rms) turbulent

velocity using a numerical method. The calculation procedure is as the

following.

With the mean square dispersion radius as a known variable and

assuming a value for a in the expression for the Lagrangian correlation

coefficient, a first approximation of the rms turbulent velocity as a

function of the z coordinate was calculated from Equation 2. Then

the calculation procedure for the equation was reversed. Considering

the rms turbulent velocity as a known variable and using the same value

2
for a as before, the equation was solved for r . The calculated and

experimental values of r2 were compared. This calculation procedure was

repeated by adjusting the values of the rms turbulent velocity until

a best possible agreement between the calculated and experimental values

of r was achieved.

The above calculations were repeated for a range of values for a

-i -I -i -l
(a = 100 sec , 4000 sec , 10000 sec and 20000 sec -1

The comparison of the calculated and experimental values of r is

shown in Figure 5. The resulting rms turbulent velocities for different

values of a are shown in Figure 6.
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From the results shown in Figure 5, it can be seen that the curves-l

for a = 10000 sec-1 appear to give the best fit for the experimental-1

data, and the curves for a = 100 sec 1 do not appear to fit the experi-

-1
mental data. Therefore, a = 10,000 sec is the best choice for the

constant in the exponential expression for the Lagrangian correlation

coefficient. The rms turbulent velocity for the combustion chamber is

--
represented in Figure 6 by the curve with a = 10000 sec 1

Although a = 10000 sec-1 is the best choice for the constant in

the exponential expression for the Lagrangian correlation coefficient,

the curves in Figure 5 show that good agreement between the calculated

and experimental values of r
2 also exists for large values of a, namely

-1 -i

a = 4000 sec and a = 20000 sec . Consequently the rms turbulent

velocities with a = 4000 sec -1 and a = 20000 sec 1 shown in Figure 6

may also be those for the combustion chamber. In other words, the

choice of the rms turbulent velocity depends upon the choice of the

value for a, as long as a is large. This can be explained by approxi-

mating the integration in Equation 2.

With a change of the integration variable, Equation 2 can be written

as

r = 4 2 (t) dt' eat V 2 (t' - T) dT (10)

o o

Since a is large, e approaches zero very rapidly at increases,

S-- can be approximated by in the integration.
s°JV 2 (t'--)

Thus the equation becomes

2 t 2 -aT
r 4 J v (t') dt' e dT

f t 2 -at'

= 4 v (t') [ 1 - 1 e ] dt'

20



The second term in the bracket is much smaller than the first and can

be neglected. The resulting equation is

r2 v (t')dt'

Changing the integration variable from t to z, and taking u to be con-

stant for the range of integration (see Figure 4), the result isr
r2 4 v ' 2 (z) dz (11)

su zI

2 /2
From this equation, it is clear that, for a fixed value of r , v in-

creases as a increases as long as a is large.

For an isotropic turbulence field, the intensity of turbulence is

defined as

(12)

T ,---2
u

The intensities of turbulence for the three large values of a were

calculated. They are shown in Figure 7. The results indicate that,

-1
for a = 10000 sec , the intensity of turbulence reaches a maximum

value of about 15% near the propellant injector, and decreases to about

4% near the nozzle.

In addition to the results of the present work, the results of the

intensity of turbulence obtained by O'Hara et al. (Reference 3) for

their liquid rocket combustion chamber are also plotted in Figure 7.

The comparison of these'results shows that the intensity of turbulence

for the liquid rocket combustion chamber is higher than that for the

gaseous rocket combustion chamber. It is noted that, besides the

differences in the propellants and the types of injectors used, the

two rocket combustion chambers are similar.
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IV. ANALYTICAL DETERMINATION OF THE HELIUM CONCENTRATION

(1) Preliminary Remarks

The distribution of the helium concentration in the combustion chamber

was also calculated analytically, in addition to that measured in the

experiment. The purpose of this calculation is to check the validity

of the effective viscosity formula (Equation 8).

In the theory of turbulent flow (see Reference 7), it has been

shown that the mean square dispersion radius is related to the effective

diffusion coefficient by the expression

D eff  1 dr 2  (13)
eff

4 dt

In turn, the effective diffusion coefficient is related to the effec-

tive viscosity through the Schmidt number which is defined as

neff (14)

eff

For the gas mixture dealt with in the present work, the Schmidt number

is approximately equal to unity. Therefore, if, at the same helium in-

jection point and sampling station, the mean square dispersion radius

obtained from the experiment agrees with that obtained from the calcu-

lation, then the effective viscosity formula will be valid for the flow

field.

(2) Governing Equations

For determining the helium concentration, the equation of the con-

servation of helium is needed, in addition to the three equations for

determining the flow field as discussed in Part 2 of Section III.
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Since helium is an inert gas, the source term in the equation of

conservation of helium is zero. Let mHe denote the helium concentration.

Then the equation of the conservation of helium can be written as

a (OD amie
.z .e e ( PD He,eff r ) (15)

@(PDH r (mpe) = 0
5r He,eff ar

If the Schmidt number is assumed to be unity, then PDHe,eff = eff

Thus Equation 15 becomes

az mHe r r mHe 3z ueff r az(16)

(U r ) = 0r eff 9r

It is noted that this equation is in the standard form (Equation 7).

(3) Boundary Conditions

For determining the helium concentration, it is necessary to con-

sider the flow field in the combustion chamber with seven propellent

injector elements. This flow field may be approximated using the results

obtained for predicting the flow field of one injector element as dis-

cussed in the preceding section. The method of approximation will be

discussed later.

Since the equation of the conservation of helium is of the elliptic

type, boundary conditions are to be specified at every point of the closed

boundary surrounding the field of interest. Figure 8 shows the boundary

conditions.
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At the exhaust end there should be no change in the helium con-

centration. The boundary condition at the exhaust end is 3mHe -= 0
z

Along the axis of symmetry or a wall, there should be no helium

crossing these boundaries. Therefore the boundary conditions are

SmHe 0 for a vertical boundary (z = constant), and Ar He for a0 =0az ar

horizontal boundary (r = constant).

To compute the helium concentration at the helium injection outlet,

it is assumed that the pressure, temperature and velocity of helium are

the same as those of the flow field at that location. Thus the helium

flow rate iHe is given by

mHe = PHe AI V. (17)

With the helium density known from this equation, the helium concentra-

tion at the helium injector outlet is calculated by

mHe = PHe (18)
P+PHeHe

where p is the density of the flow field.

(4) Calculation Procedure and Results

Spalding's numerical method was used to solve the governing equa-

tions. A computer program based on this numerical method was developed.

The details of this computer program were presented in Reference 8.

As discussed earlier in this Section, there were four differential

equations to be solved. However, three of these equations were con-

cerned with the flow field and were solved for determining the mean

axial flow velocity. Therefore, it was only necessary to use the flow

field data available to solve the equation of the conservation of helium.

30



This was possible, because it was assumed that the small amount of

helium flow does not significantly alter the existing flow field.

There were two cases of the helium concentration calculated:

(a) The helium concentration for sampling on the outer propellant

injectors (0 = 1050 in Figure 1); and (b) The helium concentration

for sampling between the outer propellant injectors (0 = 1350). In

approximating the flow field in the combustion chamber for the case

of sampling on the outer injectors, the flow field data of the outer

injectors were duplications of those of the center injector. But,

for the case of sampling between the outer injectors, the flow field

values in the regions between the two outer injectors were assumed

to be constant and were set equal to the values on the enclosure of

the center injector.

The comparison of the experimental and calculated helium con-

traction profiles is shown in Figure 9. The curves and data points

in this figure were normalized, i.e., each value of the helium con-

centration was divided by the value of the helium concentration at

r = 0. The normalization was necessary because the magnitude of the

helium concentration obtained from the experiment was different from

that obtained from the calculation at a corresponding location.

Further, in comparing the results, only the shapes of the helium con-

centration profiles are important.

As can be seen in Figure 9, the shapes of the helium concentration

profiles obtained from the experiment and those from the calculations

are in good agreement. This indicates that the effective viscosity formula

(Equation 8) with k = 0.012 is satisfactory for the present work.

31



Normalized

Analytical Curve

Normalized

Experimental Curve

O Experimental Data
Reduced to Scale
of Experimental Curve

1.5 0

1.5 = 3.41 in (8.66 cm)

z S = 8.53 in (21.67 cm)

8 = 1050

1.0 . 0

0

4-ooO

0

0.5
H\

! \

/ o

00

/ I

-0.5 0 0.5 1.0
(-2.54) (-1.27) (1.27) (2.54)

r - in (cm)

Figure 9a, Comparison of Calculated and
Experimental Helium Concentration
Profiles

32



Normalized
Analytical Curve

Normalized

Experimental
Curve.

0 Experimental Data
Reduced to Scale
of Experimental
Curve

REPRODUCIBILITY OF THE
1.5 ORIGINAI, PAGE IS POOR

zI = 3.41 in (8.66 cm)

O zS = 8.53 in (21.67 cm)

O0 = 1350
0

0o

o 1.0

0
o0

rl /

/ \
0.5

I \
0

0 o 0
o I * _ O o

-1.0 -0.5 0 0.5 1.0
(-2.54) (-1.27) (1.27) (2.54)

r - in (cm)

Figure 9b, Comparison of Calculated and

Experimental Helium Concentration
Profiles

33



Normalized

Analytical Curve

Normalized
Experimental Curve

0 Experimental Data
Reduced to Scale
of Experimental Curve

1.5

z = 3.41 in (8.66 cm)

zS = 11.54 in (29.31 cm)

0 = 1050

0
0

1.0

oo

U /

1 0

/0 o

-1.0 -0.5 0 0.5 1.0
(-2.54) (-1.27) (1.27) (2.54)

r - in (cm)

Figure 9c, Comparison of Calculated and
Experimental Helium Concentration
Profiles

34



Normalized
Analytical Curve

Normalized
Experimental Curve

0 Experimental Data
Normalized to Scale
of Experimental Curve

1.5

z I = 3.41 in (8.66 cm)

z S = 14.3 in (36.32 cm)

6 = 1350
0

0

1.0

! o \

0.5 /

I \

o

-1.0 -0.5 0 0.5 1.0
(-2.54) (-1.27) (1.27) (2.54)

r - in (cm)

Figure 9d, Comparison of Calculated and
Experimental Helium Concentration
Profiles

35



V. CONCLUSION

From the results of the present work, the following conclusions

can be drawn:

(1) For the present rocket combustion chamber, it is satisfactory

to assume that the turbulence field is circumferentially homogeneous.

(2) The turbulent diffusion process in the rocket combustion chamber

can be adequately modeled by the one-dimensional Taylor theory.

(3) The values of the intensity of turbulence vary from a maximum

of approximately 15% near the injector to approximately 4% 
at the

nozzle entrance. The Lagrangian correlation coefficient can be

-aT -I
represented by the expression e with a = 10000 sec

(4) For the turbulent flow in the present rocket combustion chamber,

Taylor's turbulent diffusion equation can be reduced to the simple

form
Z

r = v (z)dz
au zI

(5) The intensity of turbulence for the liquid rocket combustion

chamber is higher then that for the gaseous rocket combustion chamber.
-l

The value of the constant a is 4000 sec 1 for the liquid rocket com-
-l

bustion chamber and 10000 sec 1 for the gaseous rocket combustion

chamber.

(6) The effective viscosity of the flow in the combustion chamber

is satisfactorily modeled by the formula:

2/3 -1/3 2/3 2 2 1/2
eff = kd 1 (mF + 0 V /
effFF 0

with k = 0.012.
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