72 research outputs found

    Conclusions

    Get PDF
    What is the function of parent–child argumentation? This chapter intends to answer the main research question that has guided the study presented in this volume and open a discussion for future research on this topic. In the first part, the chapter provides a detailed overview of the main findings of the analysis of parent–child argumentative discussions during mealtime. The role played by parents and children in the inception and development of argumentation, and the types of conclusions of their argumentative discussions are described. Subsequently, two educational targets achieved by parents and children through their argumentative interactions are presented and critically discussed. In the last part, new open questions that should guide future investigation to expand our knowledge of the role and function of argumentation between parents and children are proposed

    The Initial Phase of the Argumentative Discussions Between Parents and Children

    Get PDF
    This chapter examines the initial phase of parent\u2013child argumentative discussions during mealtime. The conceptual tool adopted for the analysis is based on the pragma-dialectical ideal model of a critical discussion (van Eemeren & Grootendorst\u201a 2004). The types of issues leading parents and children to engage in argumentative discussions during mealtime as well as the contribution that parents and children provide to the inception of argumentation are described and discussed. The analysis of the initial phase of parent\u2013child argumentative discussions also considers the role played by the specificity of the parent\u2013child relationship and the distinctive features of the activity of family mealtime for the beginning of an argumentative discussion. Exemplary argumentative sequences that bring to light the results obtained through the qualitative analysis of a larger corpus of argumentative discussions between parents and children are presented and discussed

    Developments in cell biology for quantitative immunoelectron microscopy based on thin sections: a review

    Get PDF
    Quantitative immunoelectron microscopy uses ultrathin sections and gold particle labelling to determine distributions of molecules across cell compartments. Here, we review a portfolio of new methods for comparing labelling distributions between different compartments in one study group (method 1) and between the same compartments in two or more groups (method 2). Specimen samples are selected unbiasedly and then observed and expected distributions of gold particles are estimated and compared by appropriate statistical procedures. The methods can be used to analyse gold label distributed between volume-occupying (organelle) and surface-occupying (membrane) compartments, but in method 1, membranes must be treated as organelles. With method 1, gold counts are combined with stereological estimators of compartment size to determine labelling density (LD). For volume-occupiers, LD can be expressed simply as golds per test point and, for surface-occupiers, as golds per test line intersection. Expected distributions are generated by randomly assigning gold particles to compartments and expressing observed/expected counts as a relative labelling index (RLI). Preferentially-labelled compartments are identified from their RLI values and by Chi-squared analysis of observed and expected distributions. For method 2, the raw gold particle counts distributed between compartments are simply compared across groups by contingency table and Chi-squared analysis. This identifies the main compartments responsible for the differences between group distributions. Finally, we discuss labelling efficiency (the number of gold particles per target molecule) and describe how it can be estimated for volume- or surface-occupiers by combining stereological data with biochemical determinations

    Genetic Associations in the Vitamin D Receptor and Colorectal Cancer in African Americans and Caucasians

    Get PDF
    Low vitamin D levels are associated with an increased incidence of colorectal cancer (CRC) and higher mortality from the disease. In the US, African Americans (AAs) have the highest CRC incidence and mortality and the lowest levels of vitamin D. Single nucleotide polymorphisms (SNPs) in the vitamin D receptor (VDR) gene have been previously associated with CRC, but few studies have included AAs. We studied 795 AA CRC cases and 985 AA controls from Chicago and North Carolina as well as 1324 Caucasian cases and 990 Caucasian controls from Chicago and Spain. We genotyped 54 tagSNPs in VDR (46586959 to 46521297 Mb) and tested for association adjusting for West African ancestry, age, gender, and multiple testing. Untyped markers were imputed using MACH1.0. We analyzed associations by gender and anatomic location in the whole study group as well as by vitamin D intake in the North Carolina AA group. In the joint analysis, none of the SNPs tested was significantly associated with CRC. For four previously tested restriction fragment length polymorphisms, only one (referred to as ApaI), tagged by the SNP rs79628898, had a nominally significant p-value in AAs; none of these polymorphisms were associated with CRC in Caucasians. In the North Carolina AAs, for whom we had vitamin D intake data, we found a significant association between an intronic SNP rs11574041 and vitamin D intake, which is evidence for a VDR gene-environment interaction in AAs. In summary, using a systematic tagSNP approach, we have not found evidence for significant associations between VDR and CRC in AAs or Caucasians

    Evolution of the eukaryotic ARP2/3 activators of the WASP family: WASP, WAVE, WASH, and WHAMM, and the proposed new family members WAWH and WAML

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>WASP family proteins stimulate the actin-nucleating activity of the ARP2/3 complex. They include members of the well-known WASP and WAVE/Scar proteins, and the recently identified WASH and WHAMM proteins. WASP family proteins contain family specific N-terminal domains followed by proline-rich regions and C-terminal VCA domains that harbour the ARP2/3-activating regions.</p> <p>Results</p> <p>To reveal the evolution of ARP2/3 activation by WASP family proteins we performed a "holistic" analysis by manually assembling and annotating all homologs in most of the eukaryotic genomes available. We have identified two new families: the WAML proteins (WASP and MIM like), which combine the membrane-deforming and actin bundling functions of the IMD domains with the ARP2/3-activating VCA regions, and the WAWH protein (WASP without WH1 domain) that have been identified in amoebae, Apusozoa, and the anole lizard. Surprisingly, with one exception we did not identify any alternative splice forms for WASP family proteins, which is in strong contrast to other actin-binding proteins like Ena/VASP, MIM, or NHS proteins that share domains with WASP proteins.</p> <p>Conclusions</p> <p>Our analysis showed that the last common ancestor of the eukaryotes must have contained a homolog of WASP, WAVE, and WASH. Specific families have subsequently been lost in many taxa like the WASPs in plants, algae, Stramenopiles, and Euglenozoa, and the WASH proteins in fungi. The WHAMM proteins are metazoa specific and have most probably been invented by the Eumetazoa. The diversity of WASP family proteins has strongly been increased by many species- and taxon-specific gene duplications and multimerisations. All data is freely accessible via <url>http://www.cymobase.org</url>.</p

    Host Iron Binding Proteins Acting as Niche Indicators for Neisseria meningitidis

    Get PDF
    Neisseria meningitidis requires iron, and in the absence of iron alters its gene expression to increase iron acquisition and to make the best use of the iron it has. During different stages of colonization and infection available iron sources differ, particularly the host iron-binding proteins haemoglobin, transferrin, and lactoferrin. This study compared the transcriptional responses of N. meningitidis, when grown in the presence of these iron donors and ferric iron, using microarrays

    Relevance of laboratory testing for the diagnosis of primary immunodeficiencies: a review of case-based examples of selected immunodeficiencies

    Get PDF
    The field of primary immunodeficiencies (PIDs) is one of several in the area of clinical immunology that has not been static, but rather has shown exponential growth due to enhanced physician, scientist and patient education and awareness, leading to identification of new diseases, new molecular diagnoses of existing clinical phenotypes, broadening of the spectrum of clinical and phenotypic presentations associated with a single or related gene defects, increased bioinformatics resources, and utilization of advanced diagnostic technology and methodology for disease diagnosis and management resulting in improved outcomes and survival. There are currently over 200 PIDs with at least 170 associated genetic defects identified, with several of these being reported in recent years. The enormous clinical and immunological heterogeneity in the PIDs makes diagnosis challenging, but there is no doubt that early and accurate diagnosis facilitates prompt intervention leading to decreased morbidity and mortality. Diagnosis of PIDs often requires correlation of data obtained from clinical and radiological findings with laboratory immunological analyses and genetic testing. The field of laboratory diagnostic immunology is also rapidly burgeoning, both in terms of novel technologies and applications, and knowledge of human immunology. Over the years, the classification of PIDs has been primarily based on the immunological defect(s) ("immunophenotype") with the relatively recent addition of genotype, though there are clinical classifications as well. There can be substantial overlap in terms of the broad immunophenotype and clinical features between PIDs, and therefore, it is relevant to refine, at a cellular and molecular level, unique immunological defects that allow for a specific and accurate diagnosis. The diagnostic testing armamentarium for PID includes flow cytometry - phenotyping and functional, cellular and molecular assays, protein analysis, and mutation identification by gene sequencing. The complexity and diversity of the laboratory diagnosis of PIDs necessitates many of the above-mentioned tests being performed in highly specialized reference laboratories. Despite these restrictions, there remains an urgent need for improved standardization and optimization of phenotypic and functional flow cytometry and protein-specific assays. A key component in the interpretation of immunological assays is the comparison of patient data to that obtained in a statistically-robust manner from age and gender-matched healthy donors. This review highlights a few of the laboratory assays available for the diagnostic work-up of broad categories of PIDs, based on immunophenotyping, followed by examples of disease-specific testing

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure
    corecore