87 research outputs found

    Existence and Uniqueness results for linear second-order equations in the Heisenberg group

    Get PDF
    In this manuscript, we prove uniqueness and existence results of viscosity solutions for a class of linear second-order equations in the Heisenberg group. We state uniqueness by proving a comparison result to our class of equations, and existence via an application of Perron’s method adapted to our framework. We also provide the explicit construction of the appropriate sub- and supersolutions employed by Perron’s method for a variety of domains in the Heisenberg group.Fil: Ochoa, Pablo Daniel. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ruiz, Julio Alejo. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Tissue culture of ornamental cacti

    Get PDF
    Cacti species are plants that are well adapted to growing in arid and semiarid regions where the main problem is water availability. Cacti have developed a series of adaptations to cope with water scarcity, such as reduced leaf surface via morphological modifications including spines, cereous cuticles, extended root systems and stem tissue modifications to increase water storage, and crassulacean acid metabolism to reduce transpiration and water loss. Furthermore, seeds of these plants very often exhibit dormancy, a phenomenon that helps to prevent germination when the availability of water is reduced. In general, cactus species exhibit a low growth rate that makes their rapid propagation difficult. Cacti are much appreciated as ornamental plants due to their great variety and diversity of forms and their beautiful short-life flowers; however, due to difficulties in propagating them rapidly to meet market demand, they are very often over-collected in their natural habitats, which leads to numerous species being threatened, endangered or becoming extinct. Therefore, plant tissue culture techniques may facilitate their propagation over a shorter time period than conventional techniques used for commercial purposes; or may help to recover populations of endangered or threatened species for their re-introduction in the wild; or may also be of value to the preservation and conservation of the genetic resources of this important family. Herein we present the state-of-the-art of tissue culture techniques used for ornamental cacti and selected suggestions for solving a number of the problems faced by members of the Cactaceae family

    Haemoparasites in endemic and non-endemic passerine birds from central Mexico highlands

    Get PDF
    Haemosporidian parasites of birds are found worldwide and include the genera Haemoproteus, Plasmodium and Leucocytozoon. Infection with haemosporidian parasites can affect host physical condition and reproductive success. The aim of this study was to identify the blood parasites and parasitaemia in endemic and non-endemic passerine birds from central Mexico highlands. This study included 157 passerines representing 29 species from 17 families. Overall, 30.6% (48/157) of the birds were infected with blood parasites. Of those, Haemoproteus spp. were found in 14.0% (n = 22), Leucocytozoon spp. 12.1% (n = 19) and microfilariae 0.6% (n = 1). Blood parasites were found in 71.4% (5/7) of endemic bird species and 45.4% (10/22) of non-endemic species. Medium to high parasitaemia (number of parasites/number erythrocytes) was observed in birds with infections of Haemoproteus spp. and Leucocytozoon spp. Co-infections 3.8% (n = 6) were observed in two species of endemic birds. This study contributes to the knowledge of haemoparasites in endemic and non-endemic passerine birds from central Mexico highlands. Additional investigation on the molecular identification of haemosporidian parasites, pathogenicity and health status of these birds is necessary

    Transcriptome analyses throughout chili pepper fruit development reveal novel insights into the domestication process

    Get PDF
    Chili pepper (Capsicum spp.) is an important crop, as well as a model for fruit development studies and domestication. Here, we performed a time-course experiment to estimate standardized gene expression profiles with respect to fruit development for six domesticated and four wild chili pepper ancestors. We sampled the transcriptomes every 10 days from flowering to fruit maturity, and found that the mean standardized expression profiles for domesticated and wild accessions significantly differed. The mean standardized expression was higher and peaked earlier for domesticated vs. wild genotypes, particularly for genes involved in the cell cycle that ultimately control fruit size. We postulate that these gene expression changes are driven by selection pressures during domestication and show a robust network of cell cycle genes with a time shift in expression, which explains some of the differences between domesticated and wild phenotypes

    In vitro plantlet regeneration from nodal segments and shoot tips of Capsicum chinense Jacq. cv. Naga King Chili

    Get PDF
    An in vitro regeneration protocol was developed for Capsicum chinense Jacq. cv. Naga King Chili, a very pungent chili cultivar and an important horticultural crop of Nagaland (Northeast India). Maximum number of shoot (13 ± 0.70) was induced with bud-forming capacity (BFC) index of 10.8, by culturing nodal segments in Murashige and Skoog (MS) medium supplemented with 18.16 μM Thidiazuron (TDZ) followed by 35.52 μM 6-benzylaminopurine (BAP). Using shoot tips as explants, multiple shoot (10 ± 0.37) (BFC 8.3) was also induced in MS medium fortified with either 18.16 μM TDZ or 35.52 μM BAP. Elongated shoots were best rooted in MS medium containing 5.70 μM indole-3-acetic acid (IAA). Rooted plantlets thus developed were hardened in 2–3 weeks time in plastic cups containing potting mixture of a 1:1 mix of soil and cow dung manure and then subsequently transferred to earthen pots. The regenerated plants did not show any variation in the morphology and growth as compared to the parent plant

    Gene Functional Networks from Time Expression Profiles: A Constructive Approach Demonstrated in Chili Pepper (Capsicum annuum L.)

    Get PDF
    Gene co-expression networks are powerful tools to understand functional interactions between genes. However, large co-expression networks are difficult to interpret and do not guarantee that the relations found will be true for different genotypes. Statistically verified time expression profiles give information about significant changes in expressions through time, and genes with highly correlated time expression profiles, which are annotated in the same biological process, are likely to be functionally connected. A method to obtain robust networks of functionally related genes will be useful to understand the complexity of the transcriptome, leading to biologically relevant insights. We present an algorithm to construct gene functional networks for genes annotated in a given biological process or other aspects of interest. We assume that there are genome-wide time expression profiles for a set of representative genotypes of the species of interest. The method is based on the correlation of time expression profiles, bound by a set of thresholds that assure both, a given false discovery rate, and the discard of correlation outliers. The novelty of the method consists in that a gene expression relation must be repeatedly found in a given set of independent genotypes to be considered valid. This automatically discards relations particular to specific genotypes, assuring a network robustness, which can be set a priori. Additionally, we present an algorithm to find transcription factors candidates for regulating hub genes within a network. The algorithms are demonstrated with data from a large experiment studying gene expression during the development of the fruit in a diverse set of chili pepper genotypes. The algorithm is implemented and demonstrated in a new version of the publicly available R package “Salsa” (version 1.0).Publishe

    Development of a direct transformation method by GFP screening and in vitro whole plant regeneration of Capsicum frutescens L.

    Get PDF
    Background Capsicum is a genus of important spice crop that belongs to the chili lineage. However, many Capsicum species (family Solanaceae) are known to be recalcitrant to genetic transformation and in vitro regeneration, thus hampering the effort in using Capsicum species for detailed biological investigation. In this study, we have developed an optimized protocol for the direct transformation of Capsicum frutescens L. cv. Hot Lava via a biolistic particle delivery system. In addition, in vitro whole plant regeneration from the hypocotyl explants of C. frutescens was established. Results In this biolistic system study, explant target distance, bombardment helium (He) pressure and the size of microcarrier were the key parameters to be investigated. The optimized parameters based on screening of GFP expression were determined to be 6 cm target distance, 1350 psi of helium pressure and 1.6 μm of gold particle (microcarrier) size. The greatest number of shoots were obtained from hypocotyl as explant using Murashige and Skoog medium supplemented with 5.0 mg/L BAP and 0.1 mg/L NAA. An average of 5 shoots per explant were formed. Out of which, one shoot managed to form root and developed into whole plant. Conclusions We have obtained an optimized protocol for the biolistic transformation of chili and in vitro regeneration of chili plantlets. The establishment of the protocols will provide a platform for molecular breeding and biological studies of the chili plants

    Tissue culture of ornamental cacti

    Get PDF
    Cacti species are plants that are well adapted to growing in arid and semiarid regions where the main problem is water availability. Cacti have developed a series of adaptations to cope with water scarcity, such as reduced leaf surface via morphological modifications including spines, cereous cuticles, extended root systems and stem tissue modifications to increase water storage, and crassulacean acid metabolism to reduce transpiration and water loss. Furthermore, seeds of these plants very often exhibit dormancy, a phenomenon that helps to prevent germination when the availability of water is reduced. In general, cactus species exhibit a low growth rate that makes their rapid propagation difficult. Cacti are much appreciated as ornamental plants due to their great variety and diversity of forms and their beautiful short-life flowers; however, due to difficulties in propagating them rapidly to meet market demand, they are very often over-collected in their natural habitats, which leads to numerous species being threatened, endangered or becoming extinct. Therefore, plant tissue culture techniques may facilitate their propagation over a shorter time period than conventional techniques used for commercial purposes; or may help to recover populations of endangered or threatened species for their re-introduction in the wild; or may also be of value to the preservation and conservation of the genetic resources of this important family. Herein we present the state-of-the-art of tissue culture techniques used for ornamental cacti and selected suggestions for solving a number of the problems faced by members of the Cactaceae family
    corecore