332 research outputs found

    Gaps present a trade-off between dispersal and establishment that nourishes species diversity

    Get PDF
    We took advantage of two natural experiments to investigate processes that regulate tree recruitment in gaps. In the first, we examined the recruitment of small and large saplings and trees into 31 gaps resulting from treefalls occurring between 1984 and 2015 in the 2.25-ha core area of a 4-ha tree plot at Cocha Cashu in Peru. In the second, we identified the tallest saplings recruiting into 69 gaps created during a violent wind storm in February 2000. In the established tree plot, we were able to compare the composition of saplings in the disturbance zones of gaps prior to, during, and subsequent to the period of gap formation. Recruitment in gaps was compared with that in "nofall" zones, areas within the plot that had not experienced a treefall at least since the early 1980s. Our results confirmed earlier findings that a consistently high proportion (~60%) of established saplings survived gap formation. Light demanding species, as proxied by mortality rates, recruited under all conditions, but preferentially during periods of gap formation, a pattern that was especially strong among gap pioneers. Similar results were noted, separately, for small and large saplings and trees recruiting at >= 10 cm dbh. One hundred percent of previously untagged trees recruiting into gaps in the first post-disturbance census were gap pioneers, suggesting rapid development. This conclusion was strongly supported in a follow-up survey taken of 69 gaps 19 months after they had been synchronously created in a wind storm. Ten species of gap pioneers, eight of which are not normally present in the advance regeneration, had attained heights of 6-10 m in 19 months. The 10 gap pioneers were dispersed, variously, by primates, bats, birds, and wind and reached maximum frequency in different-sized gaps (range 1,000 m(2)). Both gap size and limited dispersal of zoochorous species into gaps serve as filters for establishment, creating a complex mosaic of conditions that enhances species diversity

    Effect of breeding performance on the distribution and activity budgets of a predominantly resident population of black‐browed albatrosses

    Get PDF
    Funding Information Fundação para Ciencia e a Tecnologica (FCT Portugal). Grant Numbers: IF/00502/2013/CP1186/CT0003, UID/AMB/50017/2019, MAREUID/MAR/04292/2019 Marie Sklodowska‐Curie grant. Grant Number: 753420 Agreement on the Conservation of Albatrosses and Petrels. Grant Number: 2013-14Peer reviewedPublisher PD

    Human biogeography and faunal exploitation in Diamante River basin, central western Argentina

    Get PDF
    A biogeographic model used to describe human peopling of southern Mendoza, central western Argentina, proposed an intensification process activated by an increase in population growth rate during the Late Holocene. During this process, high-ranked resources at the surroundings of residential camps were depleted, and hunter–gatherers broadened their diet by incorporating a larger number of low-ranked prey and domesticated plant resources. In this paper, we evaluate an alternative hypothesis, focusing on zooarchaeological data from the Diamante River basin. The results show that faunal resource intensification does not appear to have occurred in the Diamante River basin during the Late Holocene. Faunal consumption in Diamante River basin mainly reflects the local fauna in each ecological zone. The data do not show a lack of higher ranked resources. We suggest it is more likely that the demographic increase was not significant enough to cause an impact on the faunal resources. The archaeological evidence should be improved and analysed in smaller scales to continue with the intensification debate.Fil: Otaola, Clara. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Giardina, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Franchetti, Fernando Ricardo. University of Pittsburgh at Johnstown; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Species by Environment Interactions Affect Pyrrolizidine Alkaloid Expression in Senecio jacobaea, Senecio aquaticus, and Their Hybrids

    Get PDF
    We examined the effects of water and nutrient availability on the expression of the defense pyrrolizidine alkaloids (PAs) in Senecio jacobaea and S. aquaticus. Senecio jacobaea, and S. aquaticus are adapted to different natural habitats, characterized by differing abiotic conditions and different selection pressures from natural enemies. We tested if PA concentration and diversity are plastic over a range of water and nutrient treatments, and also whether such plasticity is dependent on plant species. We also tested the hypothesis that hybridization may contribute to PA diversity within plants, by comparing PA expression in parental species to that in artificially generated F1 hybrids, and also in later generation natural hybrids between S. jacobaea and S. aquaticus. We showed that total PA concentration in roots and shoots is not dependent on species, but that species determines the pattern of PA diversification. Pyrrolizidine alkaloid diversity and concentration are both dependent on environmental factors. Hybrids produce a putatively novel PA, and this PA is conserved in natural hybrids, that are backcrossed to S. jacobaea. Natural hybrids that are backcrossed several times to S. jacobaea are with regard to PA diversity significantly different from S. jacobaea but not from S. aquaticus, while F1 hybrids are in all cases more similar to S. jacobaea. These results collectively suggest that PA diversity is under the influence of natural selection

    Rapid characterisation of vegetation structure to predict refugia and climate change impacts across a global biodiversity hotspot

    Get PDF
    Identification of refugia is an increasingly important adaptation strategy in conservation planning under rapid anthropogenic climate change. Granite outcrops (GOs) provide extraordinary diversity, including a wide range of taxa, vegetation types and habitats in the Southwest Australian Floristic Region (SWAFR). However, poor characterization of GOs limits the capacity of conservation planning for refugia under climate change. A novel means for the rapid identification of potential refugia is presented, based on the assessment of local-scale environment and vegetation structure in a wider region. This approach was tested on GOs across the SWAFR. Airborne discrete return Light Detection And Ranging (LiDAR) data and Red Green and Blue (RGB) imagery were acquired. Vertical vegetation profiles were used to derive 54 structural classes. Structural vegetation types were described in three areas for supervised classification of a further 13 GOs across the region.Habitat descriptions based on 494 vegetation plots on and around these GOs were used to quantify relationships between environmental variables, ground cover and canopy height. The vegetation surrounding GOs is strongly related to structural vegetation types (Kappa = 0.8) and to its spatial context. Water gaining sites around GOs are characterized by taller and denser vegetation in all areas. The strong relationship between rainfall, soil-depth, and vegetation structure (R2 of 0.8–0.9) allowed comparisons of vegetation structure between current and future climate. Significant shifts in vegetation structural types were predicted and mapped for future climates. Water gaining areas below granite outcrops were identified as important putative refugia. A reduction in rainfall may be offset by the occurrence of deeper soil elsewhere on the outcrop. However, climate change interactions with fire and water table declines may render our conclusions conservative. The LiDAR-based mapping approach presented enables the integration of site-based biotic assessment with structural vegetation types for the rapid delineation and prioritization of key refugia

    Invasive Plants and Enemy Release: Evolution of Trait Means and Trait Correlations in Ulex europaeus

    Get PDF
    Several hypotheses that attempt to explain invasive processes are based on the fact that plants have been introduced without their natural enemies. Among them, the EICA (Evolution of Increased Competitive Ability) hypothesis is the most influential. It states that, due to enemy release, exotic plants evolve a shift in resource allocation from defence to reproduction or growth. In the native range of the invasive species Ulex europaeus, traits involved in reproduction and growth have been shown to be highly variable and genetically correlated. Thus, in order to explore the joint evolution of life history traits and susceptibility to seed predation in this species, we investigated changes in both trait means and trait correlations. To do so, we compared plants from native and invaded regions grown in a common garden. According to the expectations of the EICA hypothesis, we observed an increase in seedling height. However, there was little change in other trait means. By contrast, correlations exhibited a clear pattern: the correlations between life history traits and infestation rate by seed predators were always weaker in the invaded range than in the native range. In U. europaeus, the role of enemy release in shaping life history traits thus appeared to imply trait correlations rather than trait means. In the invaded regions studied, the correlations involving infestation rates and key life history traits such as flowering phenology, growth and pod density were reduced, enabling more independent evolution of these key traits and potentially facilitating local adaptation to a wide range of environments. These results led us to hypothesise that a relaxation of genetic correlations may be implied in the expansion of invasive species

    The evolution of the upright posture and gait—a review and a new synthesis

    Get PDF
    During the last century, approximately 30 hypotheses have been constructed to explain the evolution of the human upright posture and locomotion. The most important and recent ones are discussed here. Meanwhile, it has been established that all main hypotheses published until the last decade of the past century are outdated, at least with respect to some of their main ideas: Firstly, they were focused on only one cause for the evolution of bipedality, whereas the evolutionary process was much more complex. Secondly, they were all placed into a savannah scenario. During the 1990s, the fossil record allowed the reconstruction of emerging bipedalism more precisely in a forested habitat (e.g., as reported by Clarke and Tobias (Science 269:521–524, 1995) and WoldeGabriel et al. (Nature 412:175–178, 2001)). Moreover, the fossil remains revealed increasing evidence that this part of human evolution took place in a more humid environment than previously assumed. The Amphibian Generalist Theory, presented first in the year 2000, suggests that bipedalism began in a wooded habitat. The forests were not far from a shore, where our early ancestor, along with its arboreal habits, walked and waded in shallow water finding rich food with little investment. In contrast to all other theories, wading behaviour not only triggers an upright posture, but also forces the individual to maintain this position and to walk bipedally. So far, this is the only scenario suitable to overcome the considerable anatomical and functional threshold from quadrupedalism to bipedalism. This is consistent with paleoanthropological findings and with functional anatomy as well as with energetic calculations, and not least, with evolutionary psychology. The new synthesis presented here is able to harmonise many of the hitherto competing theories

    What Is the Evidence to Support the Use of Therapeutic Gardens for the Elderly?

    Get PDF
    Horticulture therapy employs plants and gardening activities in therapeutic and rehabilitation activities and could be utilized to improve the quality of life of the worldwide aging population, possibly reducing costs for long-term, assisted living and dementia unit residents. Preliminary studies have reported the benefits of horticultural therapy and garden settings in reduction of pain, improvement in attention, lessening of stress, modulation of agitation, lowering of as needed medications, antipsychotics and reduction of falls. This is especially relevant for both the United States and the Republic of Korea since aging is occurring at an unprecedented rate, with Korea experiencing some of the world's greatest increases in elderly populations. In support of the role of nature as a therapeutic modality in geriatrics, most of the existing studies of garden settings have utilized views of nature or indoor plants with sparse studies employing therapeutic gardens and rehabilitation greenhouses. With few controlled clinical trials demonstrating the positive or negative effects of the use of garden settings for the rehabilitation of the aging populations, a more vigorous quantitative analysis of the benefits is long overdue. This literature review presents the data supporting future studies of the effects of natural settings for the long term care and rehabilitation of the elderly having the medical and mental health problems frequently occurring with aging
    corecore