9 research outputs found

    The linewidth-size relationship in the dense ISM of the Central Molecular Zone

    Full text link
    The linewidth (sigma) - size (R) relationship has been extensively measured and analysed, in both the local ISM and in nearby normal galaxies. Generally, a power-law describes the relationship well with an index ranging from 0.2-0.6, now referred to as one of "Larson's Relationships." The nature of turbulence and star formation is considered to be intimately related to these relationships, so evaluating the sigma-R correlations in various environments is important for developing a comprehensive understanding of the ISM. We measure the sigma-R relationship in the Central Molecular Zone (CMZ) of the Galactic Centre using spectral line observations of the high density tracers N2H+, HCN, H13CN, and HCO+. We use dendrograms, which map the hierarchical nature of the position-position-velocity (PPV) data, to compute sigma and R of contiguous structures. The dispersions range from ~2-30 km/s in structures spanning sizes 2-40 pc, respectively. By performing Bayesian inference, we show that a power-law with exponent 0.3-1.1 can reasonably describe the sigma-R trend. We demonstrate that the derived sigma-R relationship is independent of the locations in the PPV dataset where sigma and R are measured. The uniformity in the sigma-R relationship suggests turbulence in the CMZ is driven on the large scales beyond >30 pc. We compare the CMZ sigma-R relationship to that measured in the Galactic molecular cloud Perseus. The exponents between the two systems are similar, suggestive of a connection between the turbulent properties within a cloud to its ambient medium. Yet, the velocity dispersion in the CMZ is systematically higher, resulting in a coefficient that is nearly five times larger. The systematic enhancement of turbulent velocities may be due to the combined effects of increased star formation activity, larger densities, and higher pressures relative to the local ISM.Comment: 11 pages, 8 figures, Accepted for publication in MNRA

    Modeling CO Emission: II. The Physical Characteristics that Determine the X factor in Galactic Molecular Clouds

    Full text link
    We investigate how the X factor, the ratio of H_2 column density (NH2) to velocity-integrated CO intensity (W), is determined by the physical properties of gas in model molecular clouds (MCs). We perform radiative transfer calculations on chemical-MHD models to compute X. Using integrated NH2 and W reproduces the limited range in X found in observations, resulting in a mean value X=2\times10^20 s/cm^2/K^1/km^1 from the Galactic MC model. However, in limited velocity intervals, X can take on a much larger range due to CO line saturation. Thus, X strongly depends on both the range in gas velocities and volume densities. The temperature (T) variations within individual MCs do not strongly affect X, as dense gas contributes most to setting X. For fixed velocity and density structure, gas with higher T has higher W, yielding X ~ T^-1/2 for T~20-100 K. We demonstrate that the linewidth-size scaling relation does not influence the X factor - only the range in velocities is important. Clouds with larger linewidths, regardless of the linewidth-size relation, have a higher W, corresponding to a lower value of X, scaling roughly as X ~ sigma^-1/2. The "mist" model, consisting of optically thick cloudlets with well-separated velocities, does not accurately reflect the conditions in a turbulent MC. We propose that the observed cloud-average values of X ~ XGal is simply a result of the limited range in NH2, temperatures, and velocities found in Galactic MCs - a ~constant value of X therefore does not require any linewidth-size relation, or that MCs are virialized objects. Since gas properties likely differ (slightly) between clouds, masses derived through a standard X should only be considered as a rough first estimate. For temperatures T~10-20 K, velocity dispersions ~1-6 km/s, and NH2~2-20\times10^21 cm^-2, we find cloud-averaged X ~ 2-4\times10^20 s/cm^2/K^1/km^1 for Solar-metallicity models.Comment: 24 pages, including 21 Figures, Accepted to MNRA

    Maximally Star-Forming Galactic Disks II. Vertically-Resolved Hydrodynamic Simulations of Starburst Regulation

    Full text link
    We explore the self-regulation of star formation using a large suite of high resolution hydrodynamic simulations, focusing on molecule-dominated regions (galactic centers and [U]LIRGS) where feedback from star formation drives highly supersonic turbulence. In equilibrium the total midplane pressure, dominated by turbulence, must balance the vertical weight of the ISM. Under self-regulation, the momentum flux injected by feedback evolves until it matches the vertical weight. We test this flux balance in simulations spanning a range of parameters, including surface density Σ\Sigma, momentum injected per stellar mass formed (p/mp_*/m_*), and angular velocity. The simulations are 2D radial-vertical slices, including both self-gravity and an external potential that confines gas to the disk midplane. After the simulations reach a steady state in all relevant quantities, including the star formation rate ΣSFR\Sigma_{SFR}, there is remarkably good agreement between the vertical weight, the turbulent pressure, and the momentum injection rate from supernovae. Gas velocity dispersions and disk thicknesses increase with p/mp_*/m_*. The efficiency of star formation per free-fall time at the mid-plane density is insensitive to the local conditions and to the star formation prescription in very dense gas. We measure efficiencies \sim0.004-0.01, consistent with low and approximately constant efficiencies inferred from observations. For Σ\Sigma\in(100--1000) \msunpc, we find ΣSFR\Sigma_{SFR}\in(0.1--4) \sfrunits, generally following a ΣSFRΣ2\Sigma_{SFR}\propto \Sigma^2 relationship. The measured relationships agree very well with vertical equilibrium and with turbulent energy replenishment by feedback within a vertical crossing time. These results, along with the observed ΣSFRΣ\Sigma_{SFR}-\Sigma relation in high density environments, provide strong evidence for the self-regulation of star formation.Comment: 22 pages, 14 figures. Accepted for publication in Ap

    The Glucuronyltransferase GlcAT-P Is Required for Stretch Growth of Peripheral Nerves in Drosophila

    Get PDF
    During development, the growth of the animal body is accompanied by a concomitant elongation of the peripheral nerves, which requires the elongation of integrated nerve fibers and the axons projecting therein. Although this process is of fundamental importance to almost all organisms of the animal kingdom, very little is known about the mechanisms regulating this process. Here, we describe the identification and characterization of novel mutant alleles of GlcAT-P, the Drosophila ortholog of the mammalian glucuronyltransferase b3gat1. GlcAT-P mutants reveal shorter larval peripheral nerves and an elongated ventral nerve cord (VNC). We show that GlcAT-P is expressed in a subset of neurons in the central brain hemispheres, in some motoneurons of the ventral nerve cord as well as in central and peripheral nerve glia. We demonstrate that in GlcAT-P mutants the VNC is under tension of shorter peripheral nerves suggesting that the VNC elongates as a consequence of tension imparted by retarded peripheral nerve growth during larval development. We also provide evidence that for growth of peripheral nerve fibers GlcAT-P is critically required in hemocytes; however, glial cells are also important in this process. The glial specific repo gene acts as a modifier of GlcAT-P and loss or reduction of repo function in a GlcAT-P mutant background enhances VNC elongation. We propose a model in which hemocytes are required for aspects of glial cell biology which in turn affects the elongation of peripheral nerves during larval development. Our data also identifies GlcAT-P as a first candidate gene involved in growth of integrated peripheral nerves and therefore establishes Drosophila as an amenable in-vivo model system to study this process at the cellular and molecular level in more detail
    corecore