362 research outputs found

    Chagas Cardiomiopathy: The Potential of Diastolic Dysfunction and Brain Natriuretic Peptide in the Early Identification of Cardiac Damage

    Get PDF
    Chagas disease remains a major cause of morbidity and mortality in several countries of Latin America and has become a potential public health problem in countries where the disease is not endemic as a result of migration flows. Cardiac involvement represents the main cause of mortality, but its diagnosis is still based on nonspecific criteria with poor sensitivity. Early identification of patients with cardiac damage is desirable, since early treatment may improve prognosis. Diastolic dysfunction and elevated brain natriuretic peptide levels are present in different cardiomyopathies and in advanced phases of Chagas disease. However, there are scarce data about the role of these parameters in earlier forms of the disease. We conducted a study to assess the diastolic function, regional systolic abnormalities and brain natriuretic peptide levels in the different forms of Chagas disease. The main finding of our investigation is that diastolic dysfunction occurs before any cardiac dilatation or motion abnormality. In addition, BNP levels identify patients with diastolic dysfunction and Chagas disease with high specificity. The results reported in this study could help to early diagnose myocardial involvement and better stratify patients with Chagas disease

    Intimate partner violence: a study in men and women from six European countries

    Get PDF
    OBJECTIVES: We aimed to assess intimate partner violence (IPV) among men and women from six cities in six European countries. METHODS: Four IPV types were measured in a population-based multicentre study of adults (18-64 years; n = 3,496). Sex- and city-differences in past year prevalence were examined considering victims, perpetrators or both and considering violent acts' severity and repetition. RESULTS: Male victimization of psychological aggression ranged from 48.8 % (Porto) to 71.8 % (Athens) and female victimization from 46.4 % (Budapest) to 70.5 % (Athens). Male and female victimization of sexual coercion ranged from 5.4 and 8.9 %, respectively, in Budapest to 27.1 and 25.3 % in Stuttgart. Male and female victims of physical assault ranged from 9.7 and 8.5 %, respectively, in Porto, to 31.2 and 23.1 % in Athens. Male victims of injury were 2.7 % in Östersund and 6.3 % in London and female victims were 1.4 % in Östersund and 8.5 % in Stuttgart. IPV differed significantly across cities (p < 0.05). Men and women predominantly experienced IPV as both victims and perpetrators with few significant sex-differences within cities. CONCLUSIONS: Results support the need to consider men and women as both potential victims and perpetrators when approaching IPV

    Development of novel molecularly imprinted solid-phase microextraction fibers and their application for the determination of antibiotic drugs in biological samples by SPME-LC/MSn

    Get PDF
    Novel molecularly imprinted polymer (MIP)-coated fibers for solid-phase microextraction (SPME) fibers were prepared by using linezolid as the template molecule. The characteristics and application of these fibers were investigated. The polypyrrole, polythiophene, and poly(3-methylthiophene) coatings were prepared in the electrochemical polymerization way. The molecularly imprinted SPME coatings display a high selectivity toward linezolid. Molecularly imprinted coatings showed a stable and reproducible response without any influence of interferents commonly existing in biological samples. High-performance liquid chromatography with spectroscopic UV and mass spectrometry (MS) detectors were used for the determination of selected antibiotic drugs (linezolid, daptomycin, amoxicillin). The isolation and preconcentration of selected antibiotic drugs from new types of biological samples (acellular and protein-free simulated body fluid) and human plasma samples were performed. The SPME MIP-coated fibers are suitable for the selective extraction of antibiotic drugs in biological samples

    SHP-2 Promotes the Maturation of Oligodendrocyte Precursor Cells Through Akt and ERK1/2 Signaling In Vitro

    Get PDF
    Background: Oligodendrocyte precursor cells (OPCs) differentiate into oligodendrocytes (OLs), which are responsible for myelination. Myelin is essential for saltatory nerve conduction in the vertebrate nervous system. However, the molecular mechanisms of maturation and myelination by oligodendrocytes remain elusive. Methods and Findings: In the present study, we showed that maturation of oligodendrocytes was attenuated by sodium orthovanadate (a comprehensive inhibitor of tyrosine phosphatases) and PTPi IV (a specific inhibitor of SHP-2). It is also found that SHP-2 was persistently expressed during maturation process of OPCs. Down-regulation of endogenous SHP-2 led to impairment of oligodendrocytes maturation and this effect was triiodo-L-thyronine (T3) dependent. Furthermore, overexpression of SHP-2 was shown to promote maturation of oligodendrocytes. Finally, it has been identified that SHP-2 was involved in activation of Akt and extracellular-regulated kinases 1 and 2 (ERK1/2) induced by T3 in oligodendrocytes

    Chinese journals: a guide for epidemiologists.

    Get PDF
    Chinese journals in epidemiology, preventive medicine and public health contain much that is of potential international interest. However, few non-Chinese speakers are acquainted with this literature. This article therefore provides an overview of the contemporary scene in Chinese biomedical journal publication, Chinese bibliographic databases and Chinese journals in epidemiology, preventive medicine and public health. The challenge of switching to English as the medium of publication, the development of publishing bibliometric data from Chinese databases, the prospect of an Open Access publication model in China, the issue of language bias in literature reviews and the quality of Chinese journals are discussed. Epidemiologists are encouraged to search the Chinese bibliographic databases for Chinese journal articles.Published versio

    Covering Chemical Diversity of Genetically-Modified Tomatoes Using Metabolomics for Objective Substantial Equivalence Assessment

    Get PDF
    As metabolomics can provide a biochemical snapshot of an organism's phenotype it is a promising approach for charting the unintended effects of genetic modification. A critical obstacle for this application is the inherently limited metabolomic coverage of any single analytical platform. We propose using multiple analytical platforms for the direct acquisition of an interpretable data set of estimable chemical diversity. As an example, we report an application of our multi-platform approach that assesses the substantial equivalence of tomatoes over-expressing the taste-modifying protein miraculin. In combination, the chosen platforms detected compounds that represent 86% of the estimated chemical diversity of the metabolites listed in the LycoCyc database. Following a proof-of-safety approach, we show that % had an acceptable range of variation while simultaneously indicating a reproducible transformation-related metabolic signature. We conclude that multi-platform metabolomics is an approach that is both sensitive and robust and that it constitutes a good starting point for characterizing genetically modified organisms

    Lipopolysaccharide modifies amiloride-sensitive Na+ transport processes across human airway cells: role of mitogen-activated protein kinases ERK 1/2 and 5

    Get PDF
    Bacterial lipopolysaccharides (LPS) are potent inducers of proinflammatory signaling pathways via the activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK), causing changes in the processes that control lung fluid homeostasis and contributing to the pathogenesis of lung disease. In human H441 airway epithelial cells, incubation of cells with 15 µg ml−1 LPS caused a significant reduction in amiloride-sensitive Isc from 15 ± 2 to 8 ± 2 µA cm−2 (p = 0.01, n = 13) and a shift in IC50 amiloride of currents from 6.8 × 10−7 to 6.4 × 10−6 M. This effect was associated with a decrease in the activity of 5 pS, highly Na+ selective, amiloride-sensitive <1 µM channels (HSC) and an increase in the activity of ∼18 pS, nonselective, amiloride-sensitive >10 µM cation channels (NSC) in the apical membrane. LPS decreased αENaC mRNA and protein abundance, inferring that LPS inhibited αENaC gene expression. This correlated with the decrease in HSC activity, indicating that these channels, but not NSCs, were comprised of at least αENaC protein. LPS increased NF-κB DNA binding activity and phosphorylation of extracellular signal-related kinase (ERK)1/2, but decreased phosphorylation of ERK5 in H441 cells. Pretreatment of monolayers with PD98059 (20 µM) inhibited ERK1/2 phosphorylation, promoted phosphorylation of ERK5, increased αENaC protein abundance, and reversed the effect of LPS on Isc and the shift in amiloride sensitivity. Inhibitors of NF-κB activation were without effect. Taken together, our data indicate that LPS acts via ERK signaling pathways to decrease αENaC transcription, reducing HSC/ENaC channel abundance, activity, and transepithelial Na+ transport in H441 airway epithelial cells

    Evolutionary Analyses of Entire Genomes Do Not Support the Association of mtDNA Mutations with Ras/MAPK Pathway Syndromes

    Get PDF
    BACKGROUND: There are several known autosomal genes responsible for Ras/MAPK pathway syndromes, including Noonan syndrome (NS) and related disorders (such as LEOPARD, neurofibromatosis type 1), although mutations of these genes do not explain all cases. Due to the important role played by the mitochondrion in the energetic metabolism of cardiac muscle, it was recently proposed that variation in the mitochondrial DNA (mtDNA) genome could be a risk factor in the Noonan phenotype and in hypertrophic cardiomyopathy (HCM), which is a common clinical feature in Ras/MAPK pathway syndromes. In order to test these hypotheses, we sequenced entire mtDNA genomes in the largest series of patients suffering from Ras/MAPK pathway syndromes analyzed to date (n = 45), most of them classified as NS patients (n = 42). METHODS/PRINCIPAL FINDINGS: The results indicate that the observed mtDNA lineages were mostly of European ancestry, reproducing in a nutshell the expected haplogroup (hg) patterns of a typical Iberian dataset (including hgs H, T, J, and U). Three new branches of the mtDNA phylogeny (H1j1, U5b1e, and L2a5) are described for the first time, but none of these are likely to be related to NS or Ras/MAPK pathway syndromes when observed under an evolutionary perspective. Patterns of variation in tRNA and protein genes, as well as redundant, private and heteroplasmic variants, in the mtDNA genomes of patients were as expected when compared with the patterns inferred from a worldwide mtDNA phylogeny based on more than 8700 entire genomes. Moreover, most of the mtDNA variants found in patients had already been reported in healthy individuals and constitute common polymorphisms in human population groups. CONCLUSIONS/SIGNIFICANCE: As a whole, the observed mtDNA genome variation in the NS patients was difficult to reconcile with previous findings that indicated a pathogenic role of mtDNA variants in NS
    corecore