4,954 research outputs found
Neutrino Oscillations and R-parity Violating Supersymmetry
Using the neutrino oscillations and neutrinoless double beta decay
experimental data we reconstructed an upper limit for the three generation
neutrino mass matrix. We compared this matrix with the predictions of the
minimal supersymmetric(SUSY) model with R-parity violation(\rp) and extracted
stringent limits on trilinear \rp coupling constants . Introducing an additional flavor symmetry which had
been successful in explaining to relate various \rp parameters. In this model
we found a unique scenario for the neutrino masses and the \rp couplings
compatible with the neutrino oscillation data. Then we derived predictions for
certain experimentally interesting observables.Comment: 19 pages, 1 figure; additional references included, minor corrections
and typos fixed. Version to appear in Nucl.Phys.
Coherent pion production in neutrino nucleus collision in the 1 GeV region
We calculate cross sections for coherent pion production in nuclei induced by
neutrinos and antineutrinos of the electron and muon type. The analogies and
differences between this process and the related ones of coherent pion
production induced by photons, or the (p,n) and reactions are
discussed. The process is one of the several ones occurring for intermediate
energy neutrinos, to be considered when detecting atmospheric neutrinos. For
this purpose the results shown here can be easily extrapolated to other
energies and other nuclei.Comment: 13 pages, LaTex, 8 post-script figures available at
[email protected]
Neutrino-nucleus reactions on ^{12}C and ^{16}O
Exclusive and inclusive cross-sections and
-capture rates are calculated for ^{12}C and ^{16}O using the consistent
random phase approximation (RPA) and pairing model. After a pairing correction
is introduced to the RPA results the flux-averaged theoretical cross-sections and -capture rates in C are
in good agreement with experiment. In particular when one takes into account
the experimental error bars, the recently measured range of values for the
cross-section is in agreement with the present theoretical
results. Predictions of and cross-sections in
^{16}O are also presented.Comment: 13 pages, Revte
Technical design and performance of the NEMO3 detector
The development of the NEMO3 detector, which is now running in the Frejus
Underground Laboratory (L.S.M. Laboratoire Souterrain de Modane), was begun
more than ten years ago. The NEMO3 detector uses a tracking-calorimeter
technique in order to investigate double beta decay processes for several
isotopes. The technical description of the detector is followed by the
presentation of its performance.Comment: Preprint submitted to Nucl. Instrum. Methods A Corresponding author:
Corinne Augier ([email protected]
Prototype ATLAS IBL Modules using the FE-I4A Front-End Readout Chip
The ATLAS Collaboration will upgrade its semiconductor pixel tracking
detector with a new Insertable B-layer (IBL) between the existing pixel
detector and the vacuum pipe of the Large Hadron Collider. The extreme
operating conditions at this location have necessitated the development of new
radiation hard pixel sensor technologies and a new front-end readout chip,
called the FE-I4. Planar pixel sensors and 3D pixel sensors have been
investigated to equip this new pixel layer, and prototype modules using the
FE-I4A have been fabricated and characterized using 120 GeV pions at the CERN
SPS and 4 GeV positrons at DESY, before and after module irradiation. Beam test
results are presented, including charge collection efficiency, tracking
efficiency and charge sharing.Comment: 45 pages, 30 figures, submitted to JINS
The Time Structure of Hadronic Showers in highly granular Calorimeters with Tungsten and Steel Absorbers
The intrinsic time structure of hadronic showers influences the timing
capability and the required integration time of hadronic calorimeters in
particle physics experiments, and depends on the active medium and on the
absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15
small plastic scintillator tiles read out with Silicon Photomultipliers, the
time structure of showers is measured on a statistical basis with high spatial
and temporal resolution in sampling calorimeters with tungsten and steel
absorbers. The results are compared to GEANT4 (version 9.4 patch 03)
simulations with different hadronic physics models. These comparisons
demonstrate the importance of using high precision treatment of low-energy
neutrons for tungsten absorbers, while an overall good agreement between data
and simulations for all considered models is observed for steel.Comment: 24 pages including author list, 9 figures, published in JINS
Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter
We present a study of showers initiated by electrons, pions, kaons, and
protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE
scintillator-tungsten analogue hadronic calorimeter. The data were recorded at
the CERN Super Proton Synchrotron in 2011. The analysis includes measurements
of the calorimeter response to each particle type as well as measurements of
the energy resolution and studies of the longitudinal and radial shower
development for selected particles. The results are compared to Geant4
simulations (version 9.6.p02). In the study of the energy resolution we include
previously published data with beam momenta from 1 GeV to 10 GeV recorded at
the CERN Proton Synchrotron in 2010.Comment: 35 pages, 21 figures, 8 table
Latest Results from the Heidelberg-Moscow Double Beta Decay Experiment
New results for the double beta decay of 76Ge are presented. They are
extracted from Data obtained with the HEIDELBERG-MOSCOW, which operates five
enriched 76Ge detectors in an extreme low-level environment in the GRAN SASSO.
The two neutrino accompanied double beta decay is evaluated for the first time
for all five detectors with a statistical significance of 47.7 kg y resulting
in a half life of (T_(1/2))^(2nu) = [1.55 +- 0.01 (stat) (+0.19) (-0.15)
(syst)] x 10^(21) years. The lower limit on the half-life of the 0nu beta-beta
decay obtained with pulse shape analysis is (T_(1/2))^(0_nu) > 1.9 x 10^(25)
[3.1 x 10^(25)] years with 90% C.L. (68% C.L.) (with 35.5 kg y). This results
in an upper limit of the effective Majorana neutrino mass of 0.35 eV (0.27 eV).
No evidence for a Majoron emitting decay mode or for the neutrinoless mode is
observed.Comment: 14 pages, revtex, 6 figures, Talk was presented at third
International Conference ' Dark Matter in Astro and Particle Physics' -
DARK2000, to be publ. in Proc. of DARK2000, Springer (2000). Please look into
our HEIDELBERG Non-Accelerator Particle Physics group home page:
http://www.mpi-hd.mpg.de/non_acc
Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector
The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry
Inclusive search for same-sign dilepton signatures in pp collisions at root s=7 TeV with the ATLAS detector
An inclusive search is presented for new physics in events with two isolated leptons (e or mu) having the same electric charge. The data are selected from events collected from p p collisions at root s = 7 TeV by the ATLAS detector and correspond to an integrated luminosity of 34 pb(-1). The spectra in dilepton invariant mass, missing transverse momentum and jet multiplicity are presented and compared to Standard Model predictions. In this event sample, no evidence is found for contributions beyond those of the Standard Model. Limits are set on the cross-section in a fiducial region for new sources of same-sign high-mass dilepton events in the ee, e mu and mu mu channels. Four models predicting same-sign dilepton signals are constrained: two descriptions of Majorana neutrinos, a cascade topology similar to supersymmetry or universal extra dimensions, and fourth generation d-type quarks. Assuming a new physics scale of 1 TeV, Majorana neutrinos produced by an effective operator V with masses below 460 GeV are excluded at 95% confidence level. A lower limit of 290 GeV is set at 95% confidence level on the mass of fourth generation d-type quarks
- …
