216 research outputs found

    Interactions between social learning and technological learning in electric vehicle futures

    Get PDF
    The transition to electric vehicles is an important strategy for reducing greenhouse gas emissions from passenger cars. Modelling transition pathways helps identify critical drivers and uncertainties. Global integrated assessment models (IAMs) have been used extensively to analyse climate mitigation policy. IAMs emphasise technological change processes but are largely silent on important social and behavioural dimensions to technological transitions. Here, we develop a novel conceptual framing and empirical evidence base on social learning processes relevant for vehicle adoption. We then implement this formulation of social learning in IMAGE, a widely-used global IAM. We apply this new modelling approach to analyse how technological learning and social learning interact to influence electric vehicle transition dynamics. We find that technological learning and social learning processes can be mutually reinforcing. Increased electric vehicle market shares can induce technological learning which reduces technology costs while social learning stimulates diffusion from early adopters to more risk-averse adopter groups. In this way, both types of learning process interact to stimulate each other. In the absence of social learning, however, the perceived risks of electric vehicle adoption among later adopting groups remains prohibitively high. In the absence of technological learning, electric vehicles remain relatively expensive and therefore only for early adopters an attractive choice. This first-of-its-kind model formulation of both social and technological learning is a significant contribution to improving the behavioural realism of global IAMs. Applying this new modelling approach emphasises the importance of market heterogeneity, real-world consumer decision-making, and social dynamics as well as technology parameters, to understand climate mitigation potentials

    Decarbonising the critical sectors of aviation, shipping, road freight and industry to limit warming to 1.5–2°C

    Get PDF
    Limiting warming to well below 2°C requires rapid and complete decarbonisation of energy systems. We compare economy-wide modelling of 1.5°C and 2°C scenarios with sector-focused analyses of four critical sectors that are difficult to decarbonise: aviation, shipping, road freight transport, and industry. We develop and apply a novel framework to analyse and track mitigation progress in these sectors. We find that emission reductions in the 1.5°C and 2°C scenarios of the IMAGE model come from deep cuts in CO2 intensities and lower energy intensities, with minimal demand reductions in these sectors’ activity. We identify a range of additional measures and policy levers that are not explicitly captured in modelled scenarios but could contribute significant emission reductions. These are demand reduction options, and include less air travel (aviation), reduced transportation of fossil fuels (shipping), more locally produced goods combined with high load factors (road freight), and a shift to a circular economy (industry). We discuss the challenges of reducing demand both for economy-wide modelling and for policy. Based on our sectoral analysis framework, we suggest modelling improvements and policy recommendations, calling on the relevant UN agencies to start tracking mitigation progress through monitoring key elements of the framework (CO2 intensity, energy efficiency, and demand for sectoral activity, as well as the underlying drivers), as a matter of urgency

    Marginalization of end-use technologies in energy innovation for climate protection

    Get PDF
    Mitigating climate change requires directed innovation efforts to develop and deploy energy technologies. Innovation activities are directed towards the outcome of climate protection by public institutions, policies and resources that in turn shape market behaviour. We analyse diverse indicators of activity throughout the innovation system to assess these efforts. We find efficient end-use technologies contribute large potential emission reductions and provide higher social returns on investment than energy-supply technologies. Yet public institutions, policies and financial resources pervasively privilege energy-supply technologies. Directed innovation efforts are strikingly misaligned with the needs of an emissions-constrained world. Significantly greater effort is needed to develop the full potential of efficient end-use technologies

    Screening for colorectal cancer: random comparison of guaiac and immunochemical faecal occult blood testing at different cut-off levels

    Get PDF
    Immunochemical faecal occult blood testing (FIT) provides quantitative test results, which allows optimisation of the cut-off value for follow-up colonoscopy. We conducted a randomised population-based trial to determine test characteristics of FIT (OC-Sensor micro, Eiken, Japan) screening at different cut-off levels and compare these with guaiac-based faecal occult blood test (gFOBT) screening in an average risk population. A representative sample of the Dutch population (n=10 011), aged 50–74 years, was 1 : 1 randomised before invitation to gFOBT and FIT screening. Colonoscopy was offered to screenees with a positive gFOBT or FIT (cut-off 50 ng haemoglobin/ml). When varying the cut-off level between 50 and 200 ng ml−1, the positivity rate of FIT ranged between 8.1% (95% CI: 7.2–9.1%) and 3.5% (95% CI: 2.9–4.2%), the detection rate of advanced neoplasia ranged between 3.2% (95% CI: 2.6–3.9%) and 2.1% (95% CI: 1.6–2.6%), and the specificity ranged between 95.5% (95% CI: 94.5–96.3%) and 98.8% (95% CI: 98.4–99.0%). At a cut-off value of 75 ng ml−1, the detection rate was two times higher than with gFOBT screening (gFOBT: 1.2%; FIT: 2.5%; P<0.001), whereas the number needed to scope (NNscope) to find one screenee with advanced neoplasia was similar (2.2 vs 1.9; P=0.69). Immunochemical faecal occult blood testing is considerably more effective than gFOBT screening within the range of tested cut-off values. From our experience, a cut-off value of 75 ng ml−1 provided an adequate positivity rate and an acceptable trade-off between detection rate and NNscope

    Sensible heat has significantly affected the global hydrological cycle over the historical period

    Get PDF
    Globally, latent heating associated with a change in precipitation is balanced by changes to atmospheric radiative cooling and sensible heat fluxes. Both components can be altered by climate forcing mechanisms and through climate feedbacks, but the impacts of climate forcing and feedbacks on sensible heat fluxes have received much less attention. Here we show, using a range of climate modelling results, that changes in sensible heat are the dominant contributor to the present global-mean precipitation change since preindustrial time, because the radiative impact of forcings and feedbacks approximately compensate. The model results show a dissimilar influence on sensible heat and precipitation from various drivers of climate change. Due to its strong atmospheric absorption, black carbon is found to influence the sensible heat very differently compared to other aerosols and greenhouse gases. Our results indicate that this is likely caused by differences in the impact on the lower tropospheric stability

    Global epidemiology of drug resistance after failure of WHO recommended first-line regimens for adult HIV-1 infection: A multicentre retrospective cohort study

    Get PDF
    Background Antiretroviral therapy (ART) is crucial for controlling HIV-1 infection through wide-scale treatment as prevention and pre-exposure prophylaxis (PrEP). Potent tenofovir disoproxil fumarate-containing regimens are increasingly used to treat and prevent HIV, although few data exist for frequency and risk factors of acquired drug resistance in regions hardest hit by the HIV pandemic. We aimed to do a global assessment of drug resistance after virological failure with first-line tenofovir-containing ART.Methods The TenoRes collaboration comprises adult HIV treatment cohorts and clinical trials of HIV drug resistance testing in Europe, Latin and North America, sub-Saharan Africa, and Asia. We extracted and harmonised data for patients undergoing genotypic resistance testing after virological failure with a first-line regimen containing tenofovir plus a cytosine analogue (lamivudine or emtricitabine) plus a non-nucleotide reverse-transcriptase inhibitor (NNRTI; efavirenz or nevirapine). We used an individual participant-level meta-analysis and multiple logistic regression to identify covariates associated with drug resistance. Our primary outcome was tenofovir resistance, defined as presence of K65R/N or K70E/G/Q mutations in the reverse transcriptase (RT) gene.Findings We included 1926 patients from 36 countries with treatment failure between 1998 and 2015. Prevalence of tenofovir resistance was highest in sub-Saharan Africa (370/654 [57%]). Pre-ART CD4 cell count was the covariate most strongly associated with the development of tenofovir resistance (odds ratio [OR] 1.50, 95% CI 1.27-1.77 for CD4 cell count &lt;100 cells per mu L). Use of lamivudine versus emtricitabine increased the risk of tenofovir resistance across regions (OR 1.48, 95% CI 1.20-1.82). Of 700 individuals with tenofovir resistance, 578 (83%) had cytosine analogue resistance (M184V/I mutation), 543 (78%) had major NNRTI resistance, and 457 (65%) had both. The mean plasma viral load at virological failure was similar in individuals with and without tenofovir resistance (145 700 copies per mL [SE 12 480] versus 133 900 copies per mL [SE 16 650; p=0.626]).Interpretation We recorded drug resistance in a high proportion of patients after virological failure on a tenofovir-containing first-line regimen across low-income and middle-income regions. Effective surveillance for transmission of drug resistance is crucial. Copyright (C) The TenoRes Study Group. Open Access article distributed under the terms of CC BY
    corecore