25 research outputs found

    From BeyondPlanck to Cosmoglobe: Preliminary WMAP\mathit{WMAP} Q\mathit Q-band analysis

    Get PDF
    We present the first application of the Cosmoglobe analysis framework by analyzing 9-year WMAP\mathit{WMAP} time-ordered observations using similar machinery as BeyondPlanck utilizes for Planck\mathit{Planck} LFI. We analyze only the Q\mathit Q-band (41 GHz) data and report on the low-level analysis process from uncalibrated time-ordered data to calibrated maps. Most of the existing BeyondPlanck pipeline may be reused for WMAP\mathit{WMAP} analysis with minimal changes to the existing codebase. The main modification is the implementation of the same preconditioned biconjugate gradient mapmaker used by the WMAP\mathit{WMAP} team. Producing a single WMAP\mathit{WMAP} Q\mathit Q1-band sample requires 22 CPU-hrs, which is slightly more than the cost of a Planck\mathit{Planck} 44 GHz sample of 17 CPU-hrs; this demonstrates that full end-to-end Bayesian processing of the WMAP\mathit{WMAP} data is computationally feasible. In general, our recovered maps are very similar to the maps released by the WMAP\mathit{WMAP} team, although with two notable differences. In temperature we find a ∌2 ΌK\sim2\,\mathrm{\mu K} quadrupole difference that most likely is caused by different gain modeling, while in polarization we find a distinct 2.5 ΌK2.5\,\mathrm{\mu K} signal that has been previously called poorly-measured modes by the WMAP\mathit{WMAP} team. In the Cosmoglobe processing, this pattern arises from temperature-to-polarization leakage from the coupling between the CMB Solar dipole, transmission imbalance, and sidelobes. No traces of this pattern are found in either the frequency map or TOD residual map, suggesting that the current processing has succeeded in modelling these poorly measured modes within the assumed parametric model by using Planck\mathit{Planck} information to break the sky-synchronous degeneracies inherent in the WMAP\mathit{WMAP} scanning strategy.Comment: 11 figures, submitted to A&A. Includes updated instrument model and changes addressing referee comment

    BeyondPlanck IV. On end-to-end simulations in CMB analysis -- Bayesian versus frequentist statistics

    Full text link
    End-to-end simulations play a key role in the analysis of any high-sensitivity CMB experiment, providing high-fidelity systematic error propagation capabilities unmatched by any other means. In this paper, we address an important issue regarding such simulations, namely how to define the inputs in terms of sky model and instrument parameters. These may either be taken as a constrained realization derived from the data, or as a random realization independent from the data. We refer to these as Bayesian and frequentist simulations, respectively. We show that the two options lead to significantly different correlation structures, as frequentist simulations, contrary to Bayesian simulations, effectively include cosmic variance, but exclude realization-specific correlations from non-linear degeneracies. Consequently, they quantify fundamentally different types of uncertainties, and we argue that they therefore also have different and complementary scientific uses, even if this dichotomy is not absolute. Before BeyondPlanck, most pipelines have used a mix of constrained and random inputs, and used the same hybrid simulations for all applications, even though the statistical justification for this is not always evident. BeyondPlanck represents the first end-to-end CMB simulation framework that is able to generate both types of simulations, and these new capabilities have brought this topic to the forefront. The Bayesian BeyondPlanck simulations and their uses are described extensively in a suite of companion papers. In this paper we consider one important applications of the corresponding frequentist simulations, namely code validation. That is, we generate a set of 1-year LFI 30 GHz frequentist simulations with known inputs, and use these to validate the core low-level BeyondPlanck algorithms; gain estimation, correlated noise estimation, and mapmaking

    Planck intermediate results : LVII. Joint Planck LFI and HFI data processing

    Get PDF
    We present the NPIPE processing pipeline, which produces calibrated frequency maps in temperature and polarization from data from the Planck Low Frequency Instrument (LFI) and High Frequency Instrument (HFI) using high-performance computers. NPIPE represents a natural evolution of previous Planck analysis efforts, and combines some of the most powerful features of the separate LFI and HFI analysis pipelines. For example, following the LFI 2018 processing procedure, NPIPE uses foreground polarization priors during the calibration stage in order to break scanning-induced degeneracies. Similarly, NPIPE employs the HFI 2018 time-domain processing methodology to correct for bandpass mismatch at all frequencies. In addition, NPIPE introduces several improvements, including, but not limited to: inclusion of the 8% of data collected during repointing manoeuvres; smoothing of the LFI reference load data streams; in-flight estimation of detector polarization parameters; and construction of maximally independent detector-set split maps. For component-separation purposes, important improvements include: maps that retain the CMB Solar dipole, allowing for high-precision relative calibration in higher-level analyses; well-defined single-detector maps, allowing for robust CO extraction; and HFI temperature maps between 217 and 857 GHz that are binned into 0 ' .9 pixels (N-side = 4096), ensuring that the full angular information in the data is represented in the maps even at the highest Planck resolutions. The net effect of these improvements is lower levels of noise and systematics in both frequency and component maps at essentially all angular scales, as well as notably improved internal consistency between the various frequency channels. Based on the NPIPE maps, we present the first estimate of the Solar dipole determined through component separation across all nine Planck frequencies. The amplitude is (3366.6 +/- 2.7) mu K, consistent with, albeit slightly higher than, earlier estimates. From the large-scale polarization data, we derive an updated estimate of the optical depth of reionization of tau =0.051 +/- 0.006, which appears robust with respect to data and sky cuts. There are 600 complete signal, noise and systematics simulations of the full-frequency and detector-set maps. As a Planck first, these simulations include full time-domain processing of the beam-convolved CMB anisotropies. The release of NPIPE maps and simulations is accompanied with a complete suite of raw and processed time-ordered data and the software, scripts, auxiliary data, and parameter files needed to improve further on the analysis and to run matching simulations.Peer reviewe

    Inclusion of photoautotrophic cultivated diatom biomass in salmon feed can deter lice

    Get PDF
    The aim of this study was to evaluate the potential of diatom (microalgae) biomass as a lice-reducing ingredient in salmon feed. The original hypothesis was based on the fact that polyunsaturated aldehydes (PUAs), e.g. 2-trans, 4-trans decadenial (A3) produced by diatoms can function as grazing deterrents and harm copepod development. Salmon lice (Lepeophtheirus salmonis) is a copepod, and we intended to test if inclusion of diatom biomass in the feed could reduce the infestation of lice on salmon. We performed experiments where salmon kept in tanks were offered four different diets, i.e. basic feed with diatoms, fish oil, Calanus sp. oil or rapeseed oil added. After a feeding period of 67 days a statistically representative group of fishes, tagged with diet group origin, were pooled in a 4000L tank and exposed to salmon lice copepodites whereafter lice infestation was enumerated. Salmon from all four diet groups had good growth with SGR values from 1.29 to 1.44% day-1 (increase from ca. 130 g to 350 g). At the termination of the experiment the number of lice on salmon offered diatom feed were statistically significantly lower than on salmon fed the other diets. Mean lice infestation values increased from diatom feed through Calanus and fish oil to standard feed with terrestrial plant ingredients. Analysis of the chemical composition of the different diets (fatty acids, amino acids) failed to explain the differences in lice infestation. The only notable result was that diatom and Calanus feed contained more FFA (free fatty acids) than feed with fish oil and the control feed. None of the potential deleterious targeted polyunsaturated aldehydes could be detected in skin samples of the salmon. What was exclusive for salmon that experienced reduced lice was diatom inclusion in the feed. This therefore still indicates the presence of some lice deterring ingredient, either in the feed, or an ingredient can have triggered production of an deterrent in the fish. An obvious follow up of this will be to perform experiments with different degrees of diatom inclusion in the feeds, i.e. dose response experiments combined with targeted PUA analyses, as well as to perform large scale experiments under natural conditions in aquaculture pens
    corecore