88 research outputs found

    Variants Cause Spastic Paraplegia Associated with Cerebral Hypomyelination

    Get PDF
    Oculodentodigital dysplasia is an autosomal dominant disorder due to variants characterized by dysmorphic features. Neurologic symptoms have been described in some patients but without a clear neuroimaging pattern. To understand the pathophysiology underlying neurologic deficits in oculodentodigital dysplasia, we studied 8 consecutive patients presenting with hereditary spastic paraplegia due to variants. Clinical disease severity was highly variable. Cerebral MR imaging revealed variable white matter abnormalities, consistent with a hypomyelination pattern, and bilateral hypointense signal of the basal ganglia on T2-weighted images and/or magnetic susceptibility sequences, as seen in neurodegeneration with brain iron accumulation diseases. Patients with the more prominent basal ganglia abnormalities were the most disabled ones. This study suggests that -related hereditary spastic paraplegia is a complex neurodegenerative disease affecting both the myelin and the basal ganglia. variants should be considered in patients with hereditary spastic paraplegia presenting with brain hypomyelination, especially if associated with neurodegeneration and a brain iron accumulation pattern

    Pelizaeus-Merzbacher-Like disease presentation of MCT8 mutated male subjects.

    No full text
    Pelizaeus-Merzbacher Disease is an X-linked hypomyelinatiing leukodystrophy. We report mutations in the thyroid hormone transporter gene MCT8 in 11% of 53 families affected by hypomyelinating leukodystrophies of unknown aetiology. The 12 MCT8 mutated patients express initially a Pelizaeus-Merzbacher-Like disease phenotype with a latter unusual improvement of magnetic resonance imaging white matter signal despite absence of clinical progression. This observation underlines the interest of determining both free T3 and free T4 serum concentrations to screen for MCT8 mutations in young patients (<3 y) with a severe Pelizaeus-Merzbacher-Like disease presentation or older severe mentally retarded male patients with "hypomyelinated" regions

    Different proteolipid protein mutants exhibit unique metabolic defects

    Get PDF
    PMD (Pelizaeus–Merzbacher disease), a CNS (central nervous system) disease characterized by shortened lifespan and severe neural dysfunction, is caused by mutations of the PLP1 (X-linked myelin proteolipid protein) gene. The majority of human PLP1 mutations are caused by duplications; almost all others are caused by missense mutations. The cellular events leading to the phenotype are unknown. The same mutations in non-humans make them ideal models to study the mechanisms that cause neurological sequelae. In the present study we show that mice with Plp1 duplications (Plp1tg) have major mitochondrial deficits with a 50% reduction in ATP, a drastically reduced mitochondrial membrane potential and increased numbers of mitochondria. In contrast, the jp (jimpy) mouse with a Plp1 missense mutation exhibits normal mitochondrial function. We show that PLP in the Plp1tg mice and in Plp1-transfected cells is targeted to mitochondria. PLP has motifs permissive for insertion into mitochondria and deletions near its N-terminus prevent its co-localization to mitochondria. These novel data show that Plp1 missense mutations and duplications of the native Plp1 gene initiate uniquely different cellular responses

    Patient/family views on data sharing in rare diseases: study in the European LeukoTreat project.: Survey assessing data sharing in leukodystrophies

    Get PDF
    International audienceThe purpose of this study was to explore patient and family views on the sharing of their medical data in the context of compiling a European leukodystrophies database. A survey questionnaire was delivered with help from referral centers and the European Leukodystrophies Association, and the questionnaires returned were both quantitatively and qualitatively analyzed. This study found that patients/families were strongly in favor of participating. Patients/families hold great hope and trust in the development of this type of research. They have a strong need for information and transparency on database governance, the conditions framing access to data, all research conducted, partnerships with the pharmaceutical industry, and they also need access to results. Our findings bring ethics-driven arguments for a process combining initial broad consent with ongoing information. On both, we propose key item-deliverables to database participants

    KARS-related diseases: Progressive leukoencephalopathy with brainstem and spinal cord calcifications as new phenotype and a review of literature

    Get PDF
    Background: KARS encodes lysyl-transfer ribonucleic acid (tRNA) synthetase, which catalyzes the aminoacylation of tRNA-Lys in the cytoplasm and mitochondria. Eleven families/sporadic patients and 16 different mutations in KARS have been reported to date. The associated clinical phenotype is heterogeneous ranging from early onset encephalopathy to isolated peripheral neuropathy or nonsyndromic hearing impairment. Recently additional presentations including leukoencephalopathy as predominant cerebral involvement or cardiomyopathy, isolated or associated with muscular and cerebral involvement, have been reported. A progressive Leukoencephalopathy with brainstem and spinal cord calcifications was previously described in a singleton patient and in two siblings, without the identification of the genetic cause. We reported here about a new severe phenotype associated with biallelic KARS mutations and sharing some common points with the other already reported phenotypes, but with a distinct clinical and neuroimaging picture. Review of KARS mutant patients published to date will be also discussed. Results: Herein, we report the clinical, biochemical and molecular findings of 2 unreported Italian patients affected by developmental delay, acquired microcephaly, spastic tetraparesis, epilepsy, sensory-neural hypoacusia, visual impairment, microcytic hypochromic anaemia and signs of hepatic dysfunction. MRI pattern in our patients was characterized by progressive diffuse leukoencephalopathy and calcifications extending in cerebral, brainstem and cerebellar white matter, with spinal cord involvement. Genetic analysis performed on these 2 patients and in one subject previously described with similar MRI pattern revealed the presence of biallelic mutations in KARS in all 3 subjects. Conclusions: With our report we define the molecular basis of the previously described Leukoencephalopathy with Brainstem and Spinal cord Calcification widening the spectrum of KARS related disorders, particularly in childhood onset disease suggestive for mitochondrial impairment. The review of previous cases does not suggest a strict and univocal genotype/phenotype correlation for this highly heterogeneous entity. Moreover, our cases confirm the usefulness of search for common brain and spine MR imaging pattern and of broad genetic screening, in syndromes clinically resembling mitochondrial disorders in spite of normal biochemical assay

    Developmental Splicing Deregulation in Leukodystrophies Related to EIF2B Mutations

    Get PDF
    Leukodystrophies (LD) are rare inherited disorders that primarily affect the white matter (WM) of the central nervous system. The large heterogeneity of LD results from the diversity of the genetically determined defects that interfere with glial cells functions. Astrocytes have been identified as the primary target of LD with cystic myelin breakdown including those related to mutations in the ubiquitous translation initiation factor eIF2B. EIF2B is involved in global protein synthesis and its regulation under normal and stress conditions. Little is known about how eIF2B mutations have a major effect on WM. We performed a transcriptomic analysis using fibroblasts of 10 eIF2B-mutated patients with a severe phenotype and 10 age matched patients with other types of LD in comparison to control fibroblasts. ANOVA was used to identify genes that were statistically significantly differentially expressed at basal state and after ER-stress. The pattern of differentially expressed genes between basal state and ER-stress did not differ significantly among each of the three conditions. However, 70 genes were specifically differentially expressed in eIF2B-mutated fibroblasts whatever the stress conditions tested compared to controls, 96% being under-expressed. Most of these genes were involved in mRNA regulation and mitochondrial metabolism. The 13 most representative genes, including genes belonging to the Heterogeneous Nuclear Ribonucleoprotein (HNRNP) family, described as regulators of splicing events and stability of mRNA, were dysregulated during the development of eIF2B-mutated brains. HNRNPH1, F and C mRNA were over-expressed in foetus but under-expressed in children and adult brains. The abnormal regulation of HNRNP expression in the brain of eIF2B-mutated patients was concomitant with splicing dysregulation of the main genes involved in glial maturation such as PLP1 for oligodendrocytes and GFAP in astrocytes. These findings demonstrate a developmental deregulation of splicing events in glial cells that is related to abnormal production of HNRNP, in eIF2B-mutated brains

    Loss of the sphingolipid desaturase DEGS1 causes hypomyelinating leukodystrophy.

    Get PDF
    Sphingolipid imbalance is the culprit in a variety of neurological diseases, some affecting the myelin sheath. We have used whole-exome sequencing in patients with undetermined leukoencephalopathies to uncover the endoplasmic reticulum lipid desaturase DEGS1 as the causative gene in 19 patients from 13 unrelated families. Shared features among the cases include severe motor arrest, early nystagmus, dystonia, spasticity, and profound failure to thrive. MRI showed hypomyelination, thinning of the corpus callosum, and progressive thalamic and cerebellar atrophy, suggesting a critical role of DEGS1 in myelin development and maintenance. This enzyme converts dihydroceramide (DhCer) into ceramide (Cer) in the final step of the de novo biosynthesis pathway. We detected a marked increase of the substrate DhCer and DhCer/Cer ratios in patients' fibroblasts and muscle. Further, we used a knockdown approach for disease modeling in Danio rerio, followed by a preclinical test with the first-line treatment for multiple sclerosis, fingolimod (FTY720, Gilenya). The enzymatic inhibition of Cer synthase by fingolimod, 1 step prior to DEGS1 in the pathway, reduced the critical DhCer/Cer imbalance and the severe locomotor disability, increasing the number of myelinating oligodendrocytes in a zebrafish model. These proof-of-concept results pave the way to clinical translation

    Genetic and phenotypic spectrum associated with IFIH1 gain-of-function

    Get PDF
    IFIH1 gain‐of‐function has been reported as a cause of a type I interferonopathy encompassing a spectrum of autoinflammatory phenotypes including Aicardi–Goutières syndrome and Singleton Merten syndrome. Ascertaining patients through a European and North American collaboration, we set out to describe the molecular, clinical and interferon status of a cohort of individuals with pathogenic heterozygous mutations in IFIH1. We identified 74 individuals from 51 families segregating a total of 27 likely pathogenic mutations in IFIH1. Ten adult individuals, 13.5% of all mutation carriers, were clinically asymptomatic (with seven of these aged over 50 years). All mutations were associated with enhanced type I interferon signaling, including six variants (22%) which were predicted as benign according to multiple in silico pathogenicity programs. The identified mutations cluster close to the ATP binding region of the protein. These data confirm variable expression and nonpenetrance as important characteristics of the IFIH1 genotype, a consistent association with enhanced type I interferon signaling, and a common mutational mechanism involving increased RNA binding affinity or decreased efficiency of ATP hydrolysis and filament disassembly rate

    Myelin Proteomics: Molecular Anatomy of an Insulating Sheath

    Get PDF
    Fast-transmitting vertebrate axons are electrically insulated with multiple layers of nonconductive plasma membrane of glial cell origin, termed myelin. The myelin membrane is dominated by lipids, and its protein composition has historically been viewed to be of very low complexity. In this review, we discuss an updated reference compendium of 342 proteins associated with central nervous system myelin that represents a valuable resource for analyzing myelin biogenesis and white matter homeostasis. Cataloging the myelin proteome has been made possible by technical advances in the separation and mass spectrometric detection of proteins, also referred to as proteomics. This led to the identification of a large number of novel myelin-associated proteins, many of which represent low abundant components involved in catalytic activities, the cytoskeleton, vesicular trafficking, or cell adhesion. By mass spectrometry-based quantification, proteolipid protein and myelin basic protein constitute 17% and 8% of total myelin protein, respectively, suggesting that their abundance was previously overestimated. As the biochemical profile of myelin-associated proteins is highly reproducible, differential proteome analyses can be applied to material isolated from patients or animal models of myelin-related diseases such as multiple sclerosis and leukodystrophies
    corecore