778 research outputs found
Contextual Analysis of Stakeholder Opinion on Management and Leadership Competencies for Undergraduate Medical Education: Informing Course Design
Background:
The study aimed to conduct a contextual analysis of interviews intended to assist with the future design of a feasible and relevant leadership and management course for undergraduate medical students at King Abdulaziz University (KAU), Saudi Arabia.
Methods:
This was a cross-sectional study conducted at King Abdulaziz University (KAU), Saudi Arabia, during 2019. An exploratory qualitative approach, utilizing systematic content analysis, was used. Data were collected using semi-structured interviews that were conducted with 10 leaders who were stakeholders at KAU, health service providers at KAU hospital, and stakeholders in the Ministry of Health.
Results:
This study revealed critical findings that highlighted the areas in which KAU could instill better and adequate leadership and management skills in their undergraduate medical students. Multiple core categories for a leadership and management curriculum emerged with many interrelated themes. Most participants mentioned that leadership can be taught and that early exposure is beneficial for developing skills. Additionally, they stated that leaders should have a vision and the ability to articulate that vision.
Conclusions:
Different implementation challenges were described in relation to the availability of human resources, the current short supply of suitable teachers, and program design. Teaching methods recommended included simulations, lectures, and a project-based approach. Assessment methods that were recommended included objective structured clinical examination (OSCE), formative and summative assessments, self-assessments, and portfolios
MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice
Hepatic steatosis is a global epidemic that is thought to contribute to the pathogenesis of type 2 diabetes. MicroRNAs (miRs) are regulators that can functionally integrate a range of metabolic and inflammatory pathways in liver. We aimed to investigate the functional role of miR-155 in hepatic steatosis. Male C57BL/6 wild-type (WT) and miR-155−/− mice were fed either normal chow or high fat diet (HFD) for 6 months then lipid levels, metabolic and inflammatory parameters were assessed in livers and serum of the mice. Mice lacking endogenous miR-155 that were fed HFD for 6 months developed increased hepatic steatosis compared to WT controls. This was associated with increased liver weight and serum VLDL/LDL cholesterol and alanine transaminase (ALT) levels, as well as increased hepatic expression of genes involved in glucose regulation (Pck1, Cebpa), fatty acid uptake (Cd36) and lipid metabolism (Fasn, Fabp4, Lpl, Abcd2, Pla2g7). Using miRNA target prediction algorithms and the microarray transcriptomic profile of miR-155−/− livers, we identified and validated that Nr1h3 (LXRα) as a direct miR-155 target gene that is potentially responsible for the liver phenotype of miR-155−/− mice. Together these data indicate that miR-155 plays a pivotal role regulating lipid metabolism in liver and that its deregulation may lead to hepatic steatosis in patients with diabetes
Multi-parallel qPCR provides increased sensitivity and diagnostic breadth for gastrointestinal parasites of humans: field-based inferences on the impact of mass deworming
BACKGROUND: Although chronic morbidity in humans from soil transmitted helminth (STH) infections can be reduced by anthelmintic treatment, inconsistent diagnostic tools make it difficult to reliably measure the impact of deworming programs and often miss light helminth infections. METHODS: Cryopreserved stool samples from 796 people (aged 2-81 years) in four villages in Bungoma County, western Kenya, were assessed using multi-parallel qPCR for 8 parasites and compared to point-of-contact assessments of the same stools by the 2-stool 2-slide Kato-Katz (KK) method. All subjects were treated with albendazole and all Ascaris lumbricoides expelled post-treatment were collected. Three months later, samples from 633 of these people were re-assessed by both qPCR and KK, re-treated with albendazole and the expelled worms collected. RESULTS: Baseline prevalence by qPCR (n = 796) was 17 % for A. lumbricoides, 18 % for Necator americanus, 41 % for Giardia lamblia and 15% for Entamoeba histolytica. The prevalence was <1% for Trichuris trichiura, Ancylostoma duodenale, Strongyloides stercoralis and Cryptosporidium parvum. The sensitivity of qPCR was 98% for A. lumbricoides and N. americanus, whereas KK sensitivity was 70% and 32%, respectively. Furthermore, qPCR detected infections with T. trichiura and S. stercoralis that were missed by KK, and infections with G. lamblia and E. histolytica that cannot be detected by KK. Infection intensities measured by qPCR and by KK were correlated for A. lumbricoides (r = 0.83, p < 0.0001) and N. americanus (r = 0.55, p < 0.0001). The number of A. lumbricoides worms expelled was correlated (p < 0.0001) with both the KK (r = 0.63) and qPCR intensity measurements (r = 0.60). CONCLUSIONS: KK may be an inadequate tool for stool-based surveillance in areas where hookworm or Strongyloides are common or where intensity of helminth infection is low after repeated rounds of chemotherapy. Because deworming programs need to distinguish between populations where parasitic infection is controlled and those where further treatment is required, multi-parallel qPCR (or similar high throughput molecular diagnostics) may provide new and important diagnostic information
Functional alpha-1B adrenergic receptors on human epicardial coronary artery endothelial cells
Alpha-1-adrenergic receptors (α1-ARs) regulate coronary arterial blood flow by binding catecholamines, norepinephrine (NE), and epinephrine (EPI), causing vasoconstriction when the endothelium is disrupted. Among the three α1-AR subtypes (α1A, α1B, and α1D), the α1D subtype predominates in human epicardial coronary arteries and is functional in human coronary smooth muscle cells (SMCs). However, the presence or function of α1-ARs on human coronary endothelial cells (ECs) is unknown. Here we tested the hypothesis that human epicardial coronary ECs express functional α1-ARs. Cultured human epicardial coronary artery ECs were studied using quantitative real-time reverse transcription polymerase chain reaction, radioligand binding, immunoblot, and 3H-thymidine incorporation. The α1B-subtype messenger ribonucleic acid (mRNA) was predominant in cultured human epicardial coronary ECs (90–95% of total α1-AR mRNA), and total α1-AR binding density in ECs was twice that in coronary SMCs. Functionally, NE and EPI through the α1B subtype activated extracellular signal-regulated kinase (ERK) in ECs, stimulated phosphorylation of EC endothelial nitric oxide synthase (eNOS), and increased deoxyribonucleic acid (DNA) synthesis. These results are the first to demonstrate α1-ARs on human coronary ECs and indicate that the α1B subtype is predominant. Our findings provide another potential mechanism for adverse cardiac effects of drug antagonists that nonselectively inhibit all three α1-AR subtypes
Clinical-pathological study on β-APP, IL-1β, GFAP, NFL, Spectrin II, 8OHdG, TUNEL, miR-21, miR-16, miR-92 expressions to verify DAI-diagnosis, grade and prognosis
Traumatic brain injury (TBI) is one of the most important death and disability cause, involving substantial costs, also in economic terms, when considering the young age of the involved subject. Aim of this paper is to report a series of patients treated at our institutions, to verify neurological results at six months or survival; in fatal cases we searched for βAPP, GFAP, IL-1β, NFL, Spectrin II, TUNEL and miR-21, miR-16, and miR-92 expressions in brain samples, to verify DAI diagnosis and grade as strong predictor of survival and inflammatory response. Concentrations of 8OHdG as measurement of oxidative stress was performed. Immunoreaction of β-APP, IL-1β, GFAP, NFL, Spectrin II and 8OHdG were significantly increased in the TBI group with respect to control group subjects. Cell apoptosis, measured by TUNEL assay, were significantly higher in the study group than control cases. Results indicated that miR-21, miR-92 and miR-16 have a high predictive power in discriminating trauma brain cases from controls and could represent promising biomarkers as strong predictor of survival, and for the diagnosis of postmortem traumatic brain injury
World Federation of Pediatric Imaging (WFPI) volunteer outreach through tele-reading: the pilot project in South Africa
BackgroundShortages in radiology services are estimated to affect 3.5-4.7 billion people worldwide. Teleradiology is a potential means of alleviating this shortage.ObjectiveThis paper examines the practicality and sustainability of a pilot pediatric teleradiology project at the Khayelitsha District Hospital in sub-Saharan Africa. We analyze how this World Federation of Pediatric Imaging (WFPI) program fares against the global challenges described in the current literature facing these practice types.Materials and methodsA teleradiology pilot was developed to provide coverage to the Khayelitsha District Hospital after the district pediatrician requested assistance in interpreting radiographs. This program utilized a network of WFPI volunteer pediatric radiologists, direct JPEG conversion of digital radiographic images, and an e-mail delivery system of images, referral requests and teleradiology opinion. Data were collected retrospectively from referral cards and JPEG images of radiographs, as well as from the volunteer officer database.ResultsA total of 555 referral cards and 1,106 radiographs were submitted for teleradiology opinion during the course of this pilot program; 74.6% of requests for image interpretation were chest radiographs and 14.2% of those were for the evaluation of tuberculosis. There were 40 volunteer teleradiologists from 17 countries; all spoke English, and 14 were bilingual (8 fluent in Spanish, 5 in Portuguese, and 1 in Italian).ConclusionTeleradiology is a viable option to alleviate radiologist shortages in underserved areas, but there are many challenges to designing an adequate teleradiology system. The WFPI pilot teleradiology program can be considered a successful one
MicroRNAs in pulmonary arterial remodeling
Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH
Social odors conveying dominance and reproductive information induce rapid physiological and neuromolecular changes in a cichlid fish
Background: Social plasticity is a pervasive feature of animal behavior. Animals adjust the expression of their social behavior to the daily changes in social life and to transitions between life-history stages, and this ability has an impact in their Darwinian fitness. This behavioral plasticity may be achieved either by rewiring or by biochemically switching nodes of the neural network underlying social behavior in response to perceived social information. Independent of the proximate mechanisms, at the neuromolecular level social plasticity relies on the regulation of gene expression, such that different neurogenomic states emerge in response to different social stimuli and the switches between states are orchestrated by signaling pathways that interface the social environment and the genotype. Here, we test this hypothesis by characterizing the changes in the brain profile of gene expression in response to social odors in the Mozambique Tilapia, Oreochromis mossambicus. This species has a rich repertoire of social behaviors during which both visual and chemical information are conveyed to conspecifics. Specifically, dominant males increase their urination frequency during agonist encounters and during courtship to convey chemical information reflecting their dominance status. Results: We recorded electro-olfactograms to test the extent to which the olfactory epithelium can discriminate between olfactory information from dominant and subordinate males as well as from pre- and post-spawning females. We then performed a genome-scale gene expression analysis of the olfactory bulb and the olfactory cortex homolog in order to identify the neuromolecular systems involved in processing these social stimuli. Conclusions: Our results show that different olfactory stimuli from conspecifics' have a major impact in the brain transcriptome, with different chemical social cues eliciting specific patterns of gene expression in the brain. These results confirm the role of rapid changes in gene expression in the brain as a genomic mechanism underlying behavioral plasticity and reinforce the idea of an extensive transcriptional plasticity of cichlid genomes, especially in response to rapid changes in their social environment.Fundacao para a Ciencia e a Tecnologia (FCT, Portugal) [EXCL/BIA-ANM/0549/2012, Pest-OE/MAR/UI0331/2011]; Dwight W. and Blanche Faye Reeder Centennial Fellowship in Systematic and Evolutionary Biology; Institute for Cellular and Molecular Biology Fellowship; FCTinfo:eu-repo/semantics/publishedVersio
Improving implementation of evidence-based practice in mental health service delivery: protocol for a cluster randomised quasi-experimental investigation of staff-focused values interventions
BACKGROUND: There is growing acceptance that optimal service provision for individuals with severe and recurrent mental illness requires a complementary focus on medical recovery (i.e., symptom management and general functioning) and personal recovery (i.e., having a ‘life worth living’). Despite significant research attention and policy-level support, the translation of this vision of healthcare into changed workplace practice continues to elude. Over the past decade, evidence-based training interventions that seek to enhance the knowledge, attitudes, and skills of staff working in the mental health field have been implemented as a primary redress strategy. However, a large body of multi-disciplinary research indicates disappointing rates of training transfer. There is an absence of empirical research that investigates the importance of worker-motivation in the uptake of desired workplace change initiatives. ‘Autonomy’ is acknowledged as important to human effectiveness and as a correlate of workplace variables like productivity, and wellbeing. To our knowledge, there have been no studies that investigate purposeful and structured use of values-based interventions to facilitate increased autonomy as a means of promoting enhanced implementation of workplace change. METHODS: This study involves 200 mental health workers across 22 worksites within five community-managed organisations in three Australian states. It involves cluster-randomisation of participants within organisation, by work site, to the experimental (values) condition, or the control (implementation). Both conditions receive two days of training focusing on an evidence-based framework of mental health service delivery. The experimental group receives a third day of values-focused intervention and 12 months of values-focused coaching. Well-validated self-report measures are used to explore variables related to values concordance, autonomy, and self-reported implementation success. Audits of work files and staff work samples are reviewed for each condition to determine the impact of implementation. Self-determination theory and theories of organisational change are used to interpret the data. DISCUSSION: The research adds to the current knowledge base related to worker motivation and uptake of workplace practice. It describes a structured protocol that aims to enhance worker autonomy for imposed workplace practices. The research will inform how best to measure and conceptualise transfer. These findings will apply particularly to contexts where individuals are not ‘volunteers’ in requisite change processes. TRIAL REGISTRATION: ACTRN: ACTRN12613000353796
Aboriginal Australian mitochondrial genome variation - An increased understanding of population antiquity and diversity
Aboriginal Australians represent one of the oldest continuous cultures outside Africa, with evidence indicating that their ancestors arrived in the ancient landmass of Sahul (present-day New Guinea and Australia) ∼55 thousand years ago. Genetic studies, though limited, have demonstrated both the uniqueness and antiquity of Aboriginal Australian genomes. We have further resolved known Aboriginal Australian mitochondrial haplogroups and discovered novel indigenous lineages by sequencing the mitogenomes of 127 contemporary Aboriginal Australians. In particular, the more common haplogroups observed in our dataset included M42a, M42c, S, P5 and P12, followed by rarer haplogroups M15, M16, N13, O, P3, P6 and P8. We propose some major phylogenetic rearrangements, such as in haplogroup P where we delinked P4a and P4b and redefined them as P4 (New Guinean) and P11 (Australian), respectively. Haplogroup P2b was identified as a novel clade potentially restricted to Torres Strait Islanders. Nearly all Aboriginal Australian mitochondrial haplogroups detected appear to be ancient, with no evidence of later introgression during the Holocene. Our findings greatly increase knowledge about the geographic distribution and phylogenetic structure of mitochondrial lineages that have survived in contemporary descendants of Australia's first settlers. © The Author(s) 2017
- …