562 research outputs found

    Quantum gate characterization in an extended Hilbert space

    Get PDF
    We describe an approach for characterizing the process of quantum gates using quantum process tomography, by first modeling them in an extended Hilbert space, which includes non-qubit degrees of freedom. To prevent unphysical processes from being predicted, present quantum process tomography procedures incorporate mathematical constraints, which make no assumptions as to the actual physical nature of the system being described. By contrast, the procedure presented here ensures physicality by placing physical constraints on the nature of quantum processes. This allows quantum process tomography to be performed using a smaller experimental data set, and produces parameters with a direct physical interpretation. The approach is demonstrated by example of mode-matching in an all-optical controlled-NOT gate. The techniques described are non-specific and could be applied to other optical circuits or quantum computing architectures.Comment: 4 pages, 2 figures, REVTeX (published version

    Fortified Blended Food Base: Effect of Co-Fermentation Time on Composition, Phytic Acid Content and Reconstitution Properties

    Get PDF
    peer-reviewedDehydrated blends of dairy-cereal combine the functional and nutritional properties of two major food groups. Fortified blended food base (FBFB) was prepared by blending fermented milk with parboiled wheat, co-fermenting the blend at 35 ◦C, shelf-drying and milling. Increasing co-fermentation time from 0 to 72 h resulted in powder with lower lactose, phytic acid and pH, and higher contents of lactic acid and galactose. Simultaneously, the pasting viscosity of the reconstituted base (16.7%, w/w, total solids) and its yield stress (σ0), consistency index (K) and viscosity on shearing decreased significantly. The changes in some characteristics (pH, phytic acid, η120) were essentially complete after 24 h co-fermentation while others (lactose, galactose and lactic acid, pasting viscosities, flowability) proceeded more gradually over 72 h. The reduction in phytic acid varied from 40 to 58% depending on the pH of the fermented milk prior to blending with the parboiled cereal. The reduction in phytic acid content of milk (fermented milk)-cereal blends with co-fermentation time is nutritionally desirable as it is conducive to an enhanced bioavailability of elements, such as Ca, Mg, Fe and Zn in milk-cereal blends, and is especially important where such blends serve as a base for fortified-blended foods supplied to food-insecure region

    Recommendations for research studies on treatment of idiopathic scoliosis: Consensus 2014 between SOSORT and SRS non–operative management committee

    Get PDF
    The two main societies clinically dealing with idiopathic scoliosis are the Scoliosis Research Society (SRS), founded in 1966, and the international Society on Scoliosis Orthopedic and Rehabilitation Treatment (SOSORT), started in 2004. Inside the SRS, the Non-Operative Management Committee (SRS-NOC) has the same clinical interest of SOSORT, that is the Orthopaedic and Rehabilitation (or Non-Operative, or conservative) Management of idiopathic scoliosis patients. The aim of this paper is to present the results of a Consensus among the best experts of non-operative treatment of Idiopathic Scoliosis, as represented by SOSORT and SRS, on the recommendation for research studies on treatment of Idiopathic Scoliosis. The goal of the consensus statement is to establish a framework for research with clearly delineated inclusion criteria, methodologies, and outcome measures so that future meta- analysis or comparative studies could occur. A Delphi method was used to generate a consensus to develop a set of recommendations for clinical studies on treatment of Idiopathic Scoliosis. It included the development of a reference scheme, which was judged during two Delphi Rounds; after this first phase, it was decided to develop the recommendations and 4 other Delphi Rounds followed. The process finished with a Consensus Meeting, that was held during the SOSORT Meeting in Wiesbaden, 8-10 May 2014, moderated by the Presidents of SOSORT (JP O'Brien) and SRS (SD Glassman) and by the Chairs of the involved Committees (SOSORT Consensus Committee: S Negrini; SRS Non-Operative Committee: MT Hresko). The Boards of the SRS and SOSORT formally accepted the final recommendations. The 18 Recommendations focused: Research needs (3), Clinically significant outcomes (4), Radiographic outcomes (3), Other key outcomes (Quality of Life, adherence to treatment) (2), Standardization of methods of non-operative research (6). © 2015 Negrini et al.; licensee BioMed Central

    Analysis of Coronavirus Temperature-Sensitive Mutants Reveals an Interplay between the Macrodomain and Papain-Like Protease Impacting Replication and Pathogenesis

    Get PDF
    Analysis of temperature-sensitive (ts) mutant viruses is a classic method allowing researchers to identify genetic loci involved in viral replication and pathogenesis. Here, we report genetic analysis of a ts strain of mouse hepatitis virus (MHV), tsNC11, focusing on the role of mutations in the macrodomain (MAC) and the papain-like protease 2 (PLP2) domain of nonstructural protein 3 (nsp3), a component of the viral replication complex. Using MHV reverse genetics, we generated a series of mutant viruses to define the contributions of macrodomain- and PLP2-specific mutations to the ts phenotype. Viral replication kinetics and efficiency-of-plating analysis performed at permissive and nonpermissive temperatures revealed that changes in the macrodomain alone were both necessary and sufficient for the ts phenotype. Interestingly, mutations in the PLP2 domain were not responsible for the temperature sensitivity but did reduce the frequency of reversion of macrodomain mutants. Coimmunoprecipitation studies are consistent with an interaction between the macrodomain and PLP2. Expression studies of the macrodomain-PLP2 portion of nsp3 indicate that the ts mutations enhance proteasome-mediated degradation of the protein. Furthermore, we found that during virus infection, the replicase proteins containing the MAC and PLP2 mutations were more rapidly degraded at the nonpermissive temperature than were the wild-type proteins. Importantly, we show that the macrodomain and PLP2 mutant viruses trigger production of type I interferon in vitro and are attenuated in mice, further highlighting the importance of the macrodomain-PLP2 interplay in viral pathogenesis. IMPORTANCE Coronaviruses (CoVs) are emerging human and veterinary pathogens with pandemic potential. Despite the established and predicted threat these viruses pose to human health, there are currently no approved countermeasures to control infections with these viruses in humans. Viral macrodomains, enzymes that remove posttranslational ADP-ribosylation of proteins, and viral multifunctional papain-like proteases, enzymes that cleave polyproteins and remove polyubiquitin chains via deubiquitinating activity, are two important virulence factors. Here, we reveal an unanticipated interplay between the macrodomain and the PLP2 domain that is important for replication and antagonizing the host innate immune response. Targeting the interaction of these enzymes may provide new therapeutic opportunities to treat CoV disease

    Localized Tensional Forces on PECAM-1 Elicit a Global Mechanotransduction Response via the Integrin-RhoA Pathway

    Get PDF
    SummaryBackgroundMechanical forces regulate cell behavior and function during development, differentiation, and tissue morphogenesis. In the vascular system, forces produced by blood flow are critical determinants not only of morphogenesis and function, but also of pathological states such as atherosclerosis. Endothelial cells (ECs) have numerous mechanotransducers, including platelet endothelial cell adhesion molecule-1 (PECAM-1) at cell-cell junctions and integrins at cell-matrix adhesions. However, the processes by which forces are transduced to biochemical signals and subsequently translated into downstream effects are poorly understood.ResultsHere, we examine mechanochemical signaling in response to direct force application on PECAM-1. We demonstrate that localized tensional forces on PECAM-1 result in, surprisingly, global signaling responses. Specifically, force-dependent activation of phosphatidylinositol 3-kinase (PI3K) downstream of PECAM-1 promotes cell-wide activation of integrins and the small GTPase RhoA. These signaling events facilitate changes in cytoskeletal architecture, including growth of focal adhesions and adaptive cytoskeletal stiffening.ConclusionsTaken together, our work provides the first evidence of a global signaling event in response to a localized mechanical stress. In addition, these data provide a possible mechanism for the differential stiffness of vessels exposed to distinct hemodynamic force patterns in vivo

    Detecting SARS-CoV-2 3CLpro Expression and Activity Using a Polyclonal Antiserum and a Luciferase-Based Biosensor

    Get PDF
    The need to stem the current outbreak of SARS-CoV-2 responsible for COVID-19 is driving the search for inhibitors that will block coronavirus replication and pathogenesis. The coronavirus 3C-like protease (3CLpro) encoded in the replicase polyprotein is an attractive target for antiviral drug development because protease activity is required for generating a functional replication complex. Reagents that can be used to screen for protease inhibitors and for identifying the replicase products of SARS-CoV-2 are urgently needed. Here we describe a luminescence-based biosensor assay for evaluating small molecule inhibitors of SARS-CoV-2 3CLpro/main protease. We also document that a polyclonal rabbit antiserum developed against SARS-CoV 3CLpro cross reacts with the highly conserved 3CLpro of SARS-CoV-2. These reagents will facilitate the pre-clinical evaluation of SARS-CoV-2 protease inhibitors

    Substantial Intestinal Microbiota Differences Between Patients With Ulcerative Colitis From Ghana and Denmark:Ulcerative Colitis in Denmark vs Ghana

    Get PDF
    BACKGROUND: Ulcerative colitis (UC) is a relapsing nontransmural inflammatory disease that is restricted to the colon and is characterized by flare-ups of bloody diarrhea. In this study, we aimed to investigate intestinal bacterial diversity in healthy controls and patients with UC with and without active disease, from Ghana and Denmark. METHODS: The study included 18 UC patients (9 with active and 9 with inactive disease) and 18 healthy controls from Ghana. In addition 16 UC patients from Denmark (8 UC with active and 8 UC with inactive disease) and 19 healthy controls from Denmark. Microbiota diversity analysis relied on sequencing of ribosomal small subunit genes. Purified genomic DNA was submitted to PCR using a primer set targeting prokaryotes and eukaryotes. The purified DNA was sequenced on the Illumina MiSeq system in a 2 × 250 bp set up (Illumina, San Diego, CA, USA). Blinded analysis of the taxonomy table was performed using BioNumerics-7.5 (Applied Maths NV, Sint-Martens-Latem, Belgium). RESULTS: When analyzing the taxonomy data for prokaryotes, cluster and principal component analysis shows Danish healthy controls clustered together, but separate from healthy controls from Ghana, which also clustered together. The Shannon diversity index (SDI) for prokaryotes shows significant differences between Danish healthy controls and patients in comparison with the corresponding groups from Ghana (p = 0.0056). Significant increased abundance of Escherichia coli was detected in healthy controls from Ghana in comparison with healthy controls from Denmark. The SDI of the prokaryotes ranges between 0 and 3.1 in the Ghana study groups, while in the Danish study groups it ranges between 1.4 and 3.2, the difference is however not significant (p = 0.138). Our data show a significant increased abundance of eukaryotes species in the healthy control group from Ghana and Denmark in comparison with patient groups from Ghana and Denmark. CONCLUSION: Overall, healthy controls and patients with UC from Denmark have increased diversity of prokaryotes. Healthy controls from Denmark and Ghana have increased abundance of eukaryotes in comparison with UC patient groups from Denmark and Ghana
    corecore