8 research outputs found

    Negotiating collective identity : crime, the media and the growth of victim communities

    Get PDF

    The impact of immediate breast reconstruction on the time to delivery of adjuvant therapy: the iBRA-2 study

    Get PDF
    Background: Immediate breast reconstruction (IBR) is routinely offered to improve quality-of-life for women requiring mastectomy, but there are concerns that more complex surgery may delay adjuvant oncological treatments and compromise long-term outcomes. High-quality evidence is lacking. The iBRA-2 study aimed to investigate the impact of IBR on time to adjuvant therapy. Methods: Consecutive women undergoing mastectomy ± IBR for breast cancer July–December, 2016 were included. Patient demographics, operative, oncological and complication data were collected. Time from last definitive cancer surgery to first adjuvant treatment for patients undergoing mastectomy ± IBR were compared and risk factors associated with delays explored. Results: A total of 2540 patients were recruited from 76 centres; 1008 (39.7%) underwent IBR (implant-only [n = 675, 26.6%]; pedicled flaps [n = 105,4.1%] and free-flaps [n = 228, 8.9%]). Complications requiring re-admission or re-operation were significantly more common in patients undergoing IBR than those receiving mastectomy. Adjuvant chemotherapy or radiotherapy was required by 1235 (48.6%) patients. No clinically significant differences were seen in time to adjuvant therapy between patient groups but major complications irrespective of surgery received were significantly associated with treatment delays. Conclusions: IBR does not result in clinically significant delays to adjuvant therapy, but post-operative complications are associated with treatment delays. Strategies to minimise complications, including careful patient selection, are required to improve outcomes for patients

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    An Exploration of Domestic Abuse Patterns and Service Provision in Humberside

    No full text
    Humberside Criminal Justice Board identified emerging evidence that suggested the prevalence and severity of domestic abuse incidents in Humberside may be increasing. The evidence for these changes – increases in the number of MARAC cases in the region, a large increase in the number of reported rapes in the police recorded records of domestic abuse and anecdotal evidence from frontline practitioners – could respectively be explained by systematic changes to referral strategies, natural variation around a small base rate and unconscious bias. However, to ignore this cumulative body of evidence could have catastrophic consequences for victims, families and practitioners. In responses to this, the Centre for Criminology and Criminal Justice at University of Hull were approached by Humberside Criminal Justice Board to discuss these issues and were invited to submit a research proposal that could provide insight into this trend. The research team submitted a proposal based around two work packages that aimed to answer three questions: 1. What are the characteristics of domestic abuse incidents, victims and perpetrators? 2. Is the severity of incidents increasing? 3. Can repeat victimisation be predicted? The proposal was reviewed and accepted by Humberside Criminal Justice Board in March 2015, was accepted and work began on the project in June 2015. This report is designed to complement and augment a report prepared by SafeLives (previously CAADA) in 2014 entitled “A Review of Services for Victims of Domestic Abuse in Humberside” and HMIC Review (2014) “Humberside Police’s approach to tackling domestic abuse”, the former of which offers a comprehensive analysis of service provision, commissioning arrangements and funding streams within the Humberside region. While the SafeLives and HMIC reports were comprehensive and valuable, they were not designed to answer specific questions about the nature of domestic abuse in the region, nor did they report the views of frontline practitioners in domestic abuse service provision. Nevertheless, this report builds upon these earlier documents and adds value to the cumulative recent literature on domestic abuse in Humberside

    Maintain Your Brain: Protocol of a 3-Year Randomized Controlled Trial of a Personalized Multi-Modal Digital Health Intervention to Prevent Cognitive Decline among Community Dwelling 55 to 77 Year Olds

    Get PDF
    Background: Maintain Your Brain (MYB) is a randomized controlled trial of an online multi-modal lifestyle intervention targeting modifiable dementia risk factors with its primary aim being to reduce cognitive decline in an older age cohort. Methods: MYB aims to recruit 8,500 non-demented community dwelling 55 to 77 year olds from the Sax Institute's 45 and Up Study in New South Wales, Australia. Participants will be screened for risk factors related to four modules that comprise the MYB intervention: physical activity, nutrition, mental health, and cognitive training. Targeting risk factors will enable interventions to be personalized so that participants receive the most appropriate modules. MYB will run for three years and up to four modules will be delivered sequentially each quarter during year one. Upon completing a module, participants will continue to receive less frequent booster activities for their eligible modules (except for the mental health module) until the end of the trial. Discussion: MYB will be the largest internet-based trial to attempt to prevent cognitive decline and potentially dementia. If successful, MYB will provide a model for not just effective intervention among older adults, but an intervention that is scalable for broad use.</p

    Maintain Your Brain: Protocol of a 3-Year Randomized Controlled Trial of a Personalized Multi-Modal Digital Health Intervention to Prevent Cognitive Decline Among Community Dwelling 55 to 77 Year Olds

    No full text
    Background: Maintain Your Brain (MYB) is a randomized controlled trial of an online multi-modal lifestyle intervention targeting modifiable dementia risk factors with its primary aim being to reduce cognitive decline in an older age cohort. Methods: MYB aims to recruit 8,500 non-demented community dwelling 55 to 77 year olds from the Sax Institute’s 45 and Up Study in New South Wales, Australia. Participants will be screened for risk factors related to four modules that comprise the MYB intervention: physical activity, nutrition, mental health, and cognitive training. Targeting risk factors will enable interventions to be personalized so that participants receive the most appropriate modules. MYB will run for three years and up to four modules will be delivered sequentially each quarter during year one. Upon completing a module, participants will continue to receive less frequent booster activities for their eligible modules (except for the mental health module) until the end of the trial. Discussion: MYB will be the largest internet-based trial to attempt to prevent cognitive decline and potentially dementia. If successful, MYB will provide a model for not just effective intervention among older adults, but an intervention that is scalable for broad use

    Large-scale gene-centric analysis identifies novel variants for coronary artery disease.

    No full text

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    No full text
    Altres ajuts: Department of Health and Social Care (DHSC); Illumina; LifeArc; Medical Research Council (MRC); UKRI; Sepsis Research (the Fiona Elizabeth Agnew Trust); the Intensive Care Society, Wellcome Trust Senior Research Fellowship (223164/Z/21/Z); BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070, BBS/E/D/30002275); UKRI grants (MC_PC_20004, MC_PC_19025, MC_PC_1905, MRNO2995X/1); UK Research and Innovation (MC_PC_20029); the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z); the Edinburgh Clinical Academic Track (ECAT) programme; the National Institute for Health Research, the Wellcome Trust; the MRC; Cancer Research UK; the DHSC; NHS England; the Smilow family; the National Center for Advancing Translational Sciences of the National Institutes of Health (CTSA award number UL1TR001878); the Perelman School of Medicine at the University of Pennsylvania; National Institute on Aging (NIA U01AG009740); the National Institute on Aging (RC2 AG036495, RC4 AG039029); the Common Fund of the Office of the Director of the National Institutes of Health; NCI; NHGRI; NHLBI; NIDA; NIMH; NINDS.Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care or hospitalization after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore