9 research outputs found

    From chitin to chitosan – a potential natural antimicrobial agent

    No full text
    Chitin is a naturally occurring polymer. Together with its derivatives such as chitosan, it has a wide spectrum of application possibilities, and many properties not yet exploited. Chitosan possesses many features desirable in an ideal antimicrobial polymer. It shows activity against multidrug-resistant bacterial and fungal strains that pose a challenge to modern medicine. Chitosan also shows activity against certain viruses, such as SARS-CoV-2. It might be used as a drug or a vaccine delivery system, is biodegradable, bioavailable and considered safe for medical use. It is important to continue exploring the potential of chitosan, as well as to investigate its sources. Indeed, many sources of this polymer are still not or have been poorly described. In this paper, we compile the current state of knowledge on the antimicrobial properties of chitosan, list alternative sources of chitin to highlight the potential of these two polymers and encourage further research

    Developmental changes in barley microRNA expression profiles coupled with miRNA target analysis

    No full text
    MicroRNAs are 19- to 24-nt-long single-stranded RNAs that are crucial regulators of gene expression which control plant development and response to environmental cues. We have analyzed microtranscriptomes of five barley developmental stages. Generally, during the barley development, miR168-3p and miR1432-5p levels increase while the 5'U-miR156-5p level decreases (with exception for the 2-week-old barley). We have identified two miR156-5p izomiRs (called 5'U-miR156-5p [20 nt] and 5'UU-miR156-5p [21 nt]), which were expressed differently during barley development. The 5' U-miR156-5p level decreased in 3-week-, 6-week-, and 68-day-old barley, when compared to the 1-week-old plants. Meanwhile, the 5' UU-miR156-5p level increased significantly in the 68-day-old barley plants. Moreover, only the 5' U-miR156 isomiR recognizes and guides unique transcription factor mRNAs from the Squamosa Promoter Binding Protein-Like (SPL) family. We identified many non-canonical microRNAs with changed expression levels during the barley development. Here, we present the profiles of microRNA expression characteristics for particular barley developmental stages. These analyses are accompanied by the experimental degradome analysis of miRNA targets

    MiRNAs differentially expressed in vegetative and reproductive organs of <i>Marchantia polymorpha</i> – insights into their expression pattern, gene structures and function

    No full text
    MicroRNAs regulate gene expression affecting a variety of plant developmental processes. The evolutionary position of Marchantia polymorpha makes it a significant model to understand miRNA-mediated gene regulatory pathways in plants. Previous studies focused on conserved miRNA-target mRNA modules showed their critical role in Marchantia development. Here, we demonstrate that the differential expression of conserved miRNAs among land plants and their targets in selected organs of Marchantia additionally underlines their role in regulating fundamental developmental processes. The main aim of this study was to characterize selected liverwort-specific miRNAs, as there is a limited knowledge on their biogenesis, accumulation, targets, and function in Marchantia. We demonstrate their differential accumulation in vegetative and generative organs. We reveal that all liverwort-specific miRNAs examined are encoded by independent transcriptional units. MpmiR11737a, MpmiR11887 and MpmiR11796, annotated as being encoded within protein-encoding genes, have their own independent transcription start sites. The analysis of selected liverwort-specific miRNAs and their pri-miRNAs often reveal correlation in their levels, suggesting transcriptional regulation. However, MpmiR11796 shows a reverse correlation to its pri-miRNA level, suggesting post-transcriptional regulation. Moreover, we identify novel targets for selected liverwort-specific miRNAs and demonstrate an inverse correlation between their expression and miRNA accumulation. In the case of one miRNA precursor, we provide evidence that it encodes two functional miRNAs with two independent targets. Overall, our research sheds light on liverwort-specific miRNA gene structure, provides new data on their biogenesis and expression regulation. Furthermore, identifying their targets, we hypothesize the potential role of these miRNAs in early land plant development and functioning.</p

    A Functional Network of Novel Barley MicroRNAs and Their Targets in Response to Drought

    No full text
    The regulation of mRNA (messenger RNA) levels by microRNA-mediated activity is especially important in plant responses to environmental stresses. In this work, we report six novel barley microRNAs, including two processed from the same precursor that are severely downregulated under drought conditions. For all analyzed microRNAs, we found target genes that were upregulated under drought conditions and that were known to be involved in a plethora of processes from disease resistance to chromatin&ndash;protein complex formation and the regulation of transcription in mitochondria. Targets for novel barley microRNAs were confirmed through degradome data analysis and RT-qPCR using primers flanking microRNA-recognition site. Our results show a broad transcriptional response of barley to water deficiency conditions through microRNA-mediated gene regulation and facilitate further research on drought tolerance in crops

    Pontastacus leptodactylus (Eschscholtz, 1823) and Faxonius limosus (Rafinesque, 1817) as new, alternative sources of chitin and chitosan

    Get PDF
    The growing demand for chitin and chitosan makes it necessary to look for new sources of these polymers and to develop more environmentally friendly methods for their isolation. The subjects of the current study were chitin and chitosan extracted from shells of two crayfish species: P. leptodactylus and F. limosus. The obtained polymers were characterized by physicochemical properties (molecular weight, thermal stability, and structure). The obtained chitosan was evaluated regarding biocompatibility and antimicrobial activity. The yield of chitin obtained from P. leptodactylus and F. limosus with a standard method was 22 ± 2.7% and 20 ± 3.6% (w/w), respectively (a preliminary extraction with a natural deep eutectic solvent was performed successfully only for P. leptodactylus). The yield of chitosan production was 15 ± 0.3% and 14 ± 4.2%, respectively. Both chitosan samples showed antimicrobial activity against E. coli and S. aureus. Cytotoxicity assays revealed a time- and concentration-dependent effect, with a milder impact at concentrations up to 250 µg/mL. A more favourable profile was observed for chitosan from F. limosus shells.info:eu-repo/semantics/publishedVersio

    A stable tRNA-like molecule is generated from the long noncoding RNA <i>GUT15</i> in <i>Arabidopsis</i>

    No full text
    <p>The <i>Arabidopsis GUT15</i> RNA belongs to a class of noncoding RNAs that are expressed from the intergenic regions of protein-coding genes. We show that the RNA polymerase II transcribed <i>GUT15</i> transcript serves as a precursor for two stable RNA species, a tRNA-like molecule and <i>GUT15</i>-tRF-F5, which are both encoded by the final intron in the <i>GUT15</i> gene. The <i>GUT15</i>-encoded tRNA-like molecule cannot be autonomously transcribed by RNA polymerase III. However, this molecule contains a CCA motif, suggesting that it may enter the tRNA maturation pathway. The <i>GUT15</i>-encoded tRNA-like sequence has an inhibiting effect on the splicing of its host intron. Moreover, we demonstrate that the canonical tRNA genes nested within introns do not affect the splicing patterns of their host protein-coding transcripts.</p
    corecore