448 research outputs found

    Archaeomagnetic results on three Early Iron Age salt-kilns from Moyenvic (France)

    Get PDF
    International audienceVariations of the Earthfs magnetic field during the first millennium BC in western Europe remain poorly constrained, especially archaeointensity changes. Three salt-kilns (MOA, MOB and MOC) sampled in Moyenvic (Lorraine, eastern France) have been studied to provide new reference data. Each kiln has been dated by radiocarbon to originate from the Early Iron Age or Hallstatt period (between VIII and Vth Century BC). Rock magnetic experiments and hysteresis results suggest the predominance of pseudo-single domain (PSD) Ti-poor magnetite. Archaeomagnetic directions obtained by thermal and alternating field demagnetizations have high mean inclination (close to 70.) and declination (between 19 and 31.). A first set of classical Thellier.Thellier experiments was conducted on 46 samples with a laboratory field almost parallel to the direction of the characteristic remanent magnetization (ChRM). Only 24 of these specimens present a linear NRM.TRM plot. For other specimens, NRM.TRM plots are concave-up with positive pTRM checks. The very large dispersion observed between the determined palaeointensity values suggests some artefacts have not been fully recognized. A second set of Thellier experiments was conducted on 34 sister specimens with the laboratory field applied quasi-perpendicular to the ChRM. In these cases,mineralogical evolutions during heating and chemical remanent magnetization acquisitions have been clearly recognized, despite positive pTRM checks. The concave-up shapes of NRM.TRM plots appear mainly due to mineralogical alteration rather than to the presence of PSD.MD grains. For the entire set of samples the success rate of the palaeointensity determinations is very low with 80 per cent of the samples rejected. Nevertheless, reliable mean archaeointensities have been obtained for two of the three kilns (MOA, 80.1 } 14.5 Æ’ĂŠT and MOB, 86.6 } 6.9 Æ’ĂŠT at the latitude of Paris). The high field strength and the archaeomagnetic directions determined, combined with previous published data, provide further evidence for important changes of the Earth magnetic field in Europe during the first half of the first millennium BC. These large variations of the geomagnetic field during the Iron Ages indicate that archaeomagnetism is highly suitable for dating of structures from this period

    Cooling rates of pyroclastic deposits inferred from mineral magnetic investigations: a case study from the Pleistocene MĂœtina Maar (Czech Republic)

    Get PDF
    Tephra layers of the MĂœtina Maar, Czech Republic, contain ferrimagnetic Mg–Al-rich titanomagnetite, which is suggested to originate from a fractionated alkaline CO2_{2}-rich lithospheric mantle melt. We investigated the magnetic mineralogy and Curie temperature (TC_{C}) from tephra deposits of two drill cores (< 9 m depth). TC_{C} calculated (208 ± 14 °C) from chemical composition (Fe2+^{2+}0.8_{0.8}Mg0.5_{0.5}Fe3+^{3+}1.1_{1.1}Al0.3_{0.3}Ti0.3_{0.3}O4_{4}) is in accordance with TC retrieved from cooling curves of temperature-dependent magnetic susceptibility measurements (195–232 °C). However, thermomagnetic curves are irreversible either with lower (type I) or higher (type II) TC in the heating curve. All curves show transition temperatures above ca. 390 °C, indicating maghemitization. We interpret the irreversibility of TC (ΔTC_{C}) in terms of different degrees of cation ordering, overprinted or masked by different degrees of maghemitization, which is a low-temperature phenomenon. Negative ΔTC_{C} indicates that original deposited titanomagnetite has cooled faster and, therefore, has stored a lower degree of cation ordering compared to heating/cooling rate of 11 °C/min in the Kappabridge. Type II with positive ΔTC_{C} indicates higher degree of cation ordering, and, therefore, slower cooling rate. The central part of this deposit shows most severe maghemitization, indicating rather wet emplacement. We, therefore, suggest different eruption styles for deposition of type I pyroclastics with more phreatomagmatic and type II pyroclastics with more phreato-Strombolian eruption styles. Our study is a new approach to discriminate different cooling histories in maar deposits using the Curie temperature of titanomagnetite. We suggest that this method has the potential to discriminate different emplacement modes resulting from different eruption styles

    Environmental control on the occurrence of high-coercivity magnetic minerals and formation of iron sulfides in a 640 ka sediment sequence from Lake Ohrid (Balkans)

    Get PDF
    The bulk magnetic mineral record from Lake Ohrid, spanning the past 637 kyr, reflects large-scale shifts in hydrological conditions, and, superimposed, a strong signal of environmental conditions on glacial–interglacial and millennial timescales. A shift in the formation of early diagenetic ferrimagnetic iron sulfides to siderites is observed around 320 ka. This change is probably associated with variable availability of sulfide in the pore water. We propose that sulfate concentrations were significantly higher before â€‰âˆŒâ€‰â€Ż320 ka, due to either a higher sulfate flux or lower dilution of lake sulfate due to a smaller water volume. Diagenetic iron minerals appear more abundant during glacials, which are generally characterized by higher Fe / Ca ratios in the sediments. While in the lower part of the core the ferrimagnetic sulfide signal overprints the primary detrital magnetic signal, the upper part of the core is dominated by variable proportions of high- to low-coercivity iron oxides. Glacial sediments are characterized by high concentration of high-coercivity magnetic minerals (hematite, goethite), which relate to enhanced erosion of soils that had formed during preceding interglacials. Superimposed on the glacial–interglacial behavior are millennial-scale oscillations in the magnetic mineral composition that parallel variations in summer insolation. Like the processes on glacial–interglacial timescales, low summer insolation and a retreat in vegetation resulted in enhanced erosion of soil material. Our study highlights that rock-magnetic studies, in concert with geochemical and sedimentological investigations, provide a multi-level contribution to environmental reconstructions, since the magnetic properties can mirror both environmental conditions on land and intra-lake processes

    Sedimentation rates in the Makarov Basin, central Arctic Ocean: A paleomagnetic and rock magnetic approach

    Get PDF
    Three long sediment cores from the Makarov Basin have been subjected to detailed paleomagnetic and rock magnetic analyses. Investigated sediments are dominated by normal polarity including short reversal excursions, indicating that most of the sediments are of Brunhes age. In general, the recovered sediments show only low to moderate variability in concentration and grain size of the remanence-carrying minerals. Estimations of relative paleointensity variations yielded a well-documented succession of pronounced lows and highs that could be correlated to published reference curves. However, together with five accelerator mass spectrometry C-14 ages and an incomplete Be-10 record, still two different interpretations of the paleomagnetic data are possible, with long-term sedimentation rates of either 1.3 or 4 cm kyr(-1) However, both models implicate highly variable sedimentation rates of up to 10 cm kyr(-1), and abrupt changes in rock magnetic parameters might even indicate several hiatuses

    On‐site non‐destructive determination of the remanent magnetization of archaeological finds using field magnetometers

    Get PDF
    The determination of the natural remanent magnetization (NRM) of archaeological features can be used for magnetic modelling, joining of shards, archaeomagnetic dating or the investigation of the firing–cooling–collapsing order of ancient buildings. The measurement of NRM is normally conducted on cylindrical or cubic samples in the laboratory. Nevertheless, archaeological finds should preferably not be destroyed, and laboratory instruments are high in costs. Therefore, we propose a lightweight and portable measurement set-up including already available field magnetometers (preferably caesium magnetometers) in which the archaeological sample of arbitrary shape, in our case a piece of daub, is mounted inside a gimbal to be rotated in all directions. The magnetic field of the sample is measured at a large number of rotational positions with the magnetometer kept at fixed position. In these measurements, the unknown direction of the NRM vector of the sample is rotated, whereas the average magnetic susceptibility of the sample and the ambient magnetic field are constant and known. Hence, the vector of NRM can be determined through least-squares inversion. For the inversion computation, the sample volume is discretized either as voxel model or approximated as an equivalent sphere. Under certain conditions depending on sample–sensor distance, dipole moment and radius of the sample, the approximation by a sphere is valid without effect on the accuracy of results.This is accurate enough, for example, to determine from daub pieces of burnt house remains whether the building was burnt and cooled before or after it collapsed

    Holocene Temperature Variations in Semi-Arid Central Mongolia—A Chronological and Sedimentological Perspective From a 7400-year Lake Sediment Record From the Khangai Mountains

    Get PDF
    Semi-arid Mongolia is a highly sensitive region to climate changes, but the region’s Holocene paleoclimatic evolution and its underlying forcing mechanisms have been the subject of much recent debate. Here we present a continuous 7.4 ka sediment record from the high-altitude Shireet Naiman Nuur (Nuur = lake) in the central Mongolian Khangai Mountains. We extensively dated the sediments and analyzed elemental composition and bulk isotopes for lake sediment characterization. Our results show that 14C-dating of bulk organic carbon and terrestrial macrofossils provide a robust and precise chronology for the past 7.4 ± 0.3 cal ka BP at Shireet Naiman Nuur and 14C-ages are mostly in stratigraphic order. The 14C-based chronology is confirmed by paleomagnetic secular variations, which resemble the predictions of spherical harmonic geomagnetic field models. The very good chronological control makes paleomagnetic secular variation stratigraphy a powerful tool for evaluating and refining regional 14C-chronologies when compared to the record presented here. The lake sediment proxies TOC, N, log (Ca/Ti) and log (Si/Ti) reveal increased lake primary productivity and high growing season temperatures from 7.4 ± 0.3 to 4.3 ± 0.2 cal ka BP, which is likely the result of stronger summer insolation and pronounced warming. Reduced summer insolation thereafter results in decreased productivity and low growing season temperatures at Shireet Naiman Nuur from 4.3 ± 0.3 cal ka BP until present day. The globally acknowledged 4.2 ka event also appears as a pronounced cooling event at Shireet Naiman Nuur, and additional abrupt cooling events occurred during minima in total solar irradiance at ~3.4, 2.8 and 2.4 ka BP. Low lake primary productivity and growing season temperatures are likely the result of longer ice cover periods at the high-altitude (2,429m a.s.l.) Shireet Naiman Nuur. This leads to shorter mixing periods of the lake water which is supported by more positive ÎŽ13CTOC because of increased incorporation of dissolved HCO3− by aquatic producers during periods of longer ice cover

    Evidence for geomagnetic excursions recorded in Brunhes and Matuyama Chron lavas from the trans‐Mexican volcanic belt

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/99072/1/arar_methodology.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/99072/2/jgrb50214.pd

    VARDA (VARved sediments DAtabase) – providing and connecting proxy data from annually laminated lake sediments

    Get PDF
    Varved lake sediments provide long climatic records with high temporal resolution and low associated age uncertainty. Robust and detailed comparison of well-dated and annually laminated sediment records is crucial for reconstructing abrupt and regionally time-transgressive changes as well as validation of spatial and temporal trajectories of past climatic changes. The VARved sediments DAtabase (VARDA) presented here is the first data compilation for varve chronologies and associated palaeoclimatic proxy records. The current version 1.0 allows detailed comparison of published varve records from 95 lakes. VARDA is freely accessible and was created to assess outputs from climate models with high-resolution terrestrial palaeoclimatic proxies. VARDA additionally provides a technical environment that enables to explore the database of varved lake sediments using a connected data-model and can generate a state-of-the-art graphic representation of multi-site comparison. This allows to reassess existing chronologies and tephra events to synchronize and compare even distant varved lake records. Furthermore, the present version of VARDA permits to explore varve thickness data. In this paper, we report in detail on the data mining and compilation strategies for the identification of varved lakes and assimilation of high-resolution chronologies as well as the technical infrastructure of the database. Additional paleoclimate proxy data will be provided in forthcoming updates. The VARDA graph-database and user interface can be accessed online at https://varve.gfz-potsdam.de, all datasets of version 1.0 are available at http://doi.org/10.5880/GFZ.4.3.2019.003 (Ramisch et al., 2019)
    • 

    corecore