31 research outputs found

    Congenital microcephaly

    Get PDF
    The underlying etiologies of genetic congenital microcephaly are complex and multifactorial. Recently, with the exponential growth in the identification and characterization of novel genetic causes of congenital microcephaly, there has been a consolidation and emergence of certain themes concerning underlying pathomechanisms. These include abnormal mitotic microtubule spindle structure, numerical and structural abnormalities of the centrosome, altered cilia function, impaired DNA repair, DNA Damage Response signaling and DNA replication, along with attenuated cell cycle checkpoint proficiency. Many of these processes are highly interconnected. Interestingly, a defect in a gene whose encoded protein has a canonical function in one of these processes can often have multiple impacts at the cellular level involving several of these pathways. Here, we overview the key pathomechanistic themes underlying profound congenital microcephaly, and emphasize their interconnected nature

    Emergency treatment with levetiracetam or phenytoin in status epilepticus in children-the EcLiPSE study: Study protocol for a randomised controlled trial

    Get PDF
    © The Author(s). 2017. Background: Convulsive status epilepticus (CSE) is the most common life-threatening neurological emergency in childhood. These children are also at risk of significant morbidity, with acute and chronic impact on the family and the health and social care systems. The current recommended first-choice, second-line treatment in children aged 6 months and above is intravenous phenytoin (fosphenytoin in the USA), although there is a lack of evidence for its use and it is associated with significant side effects. Emerging evidence suggests that intravenous levetiracetam may be effective as a second-line agent for CSE, and fewer adverse effects have been described. This trial therefore aims to determine whether intravenous phenytoin or levetiracetam is more effective, and safer, in treating childhood CSE. Methods/design: This is a phase IV, multi-centre, parallel group, randomised controlled, open-label trial. Following treatment for CSE with first-line treatment, children with ongoing seizures are randomised to receive either phenytoin (20 mg/kg, maximum 2 g) or levetiracetam (40 mg/kg, maximum 2.5 g) intravenously. The primary outcome measure is the cessation of all visible signs of CSE as determined by the treating clinician. Secondary outcome measures include the need for further anti-seizure medications or rapid sequence induction for ongoing CSE, admission to critical care areas, and serious adverse reactions. Patients are recruited without prior consent, with deferred consent sought at an appropriate time for the family. The primary analysis will be by intention-to-treat. The primary outcome is a time to event outcome and a sample size of 140 participants in each group will have 80% power to detect an increase in CSE cessation rates from 60% to 75%. Our total sample size of 308 randomised and treated participants will allow for 10% loss to follow-up. Discussion: This clinical trial will determine whether phenytoin or levetiracetam is more effective as an intravenous second-line agent for CSE, and provide evidence for management recommendations. In addition, this trial will also provide data on which of these therapies is safer in this setting

    Zebrafish: a vertebrate tool for studying basal body biogenesis, structure, and function.

    Get PDF
    Understanding the role of basal bodies (BBs) during development and disease has been largely overshadowed by research into the function of the cilium. Although these two organelles are closely associated, they have specific roles to complete for successful cellular development. Appropriate development and function of the BB are fundamental for cilia function. Indeed, there are a growing number of human genetic diseases affecting ciliary development, known collectively as the ciliopathies. Accumulating evidence suggests that BBs establish cell polarity, direct ciliogenesis, and provide docking sites for proteins required within the ciliary axoneme. Major contributions to our knowledge of BB structure and function have been provided by studies in flagellated or ciliated unicellular eukaryotic organisms, specifically Tetrahymena and Chlamydomonas. Reproducing these and other findings in vertebrates has required animal in vivo models. Zebrafish have fast become one of the primary organisms of choice for modeling vertebrate functional genetics. Rapid ex-utero development, proficient egg laying, ease of genetic manipulation, and affordability make zebrafish an attractive vertebrate research tool. Furthermore, zebrafish share over 80 % of disease causing genes with humans. In this article, we discuss the merits of using zebrafish to study BB functional genetics, review current knowledge of zebrafish BB ultrastructure and mechanisms of function, and consider the outlook for future zebrafish-based BB studies

    A case of near-drowning:A case for routine cerebral monitoring

    No full text
    A 6-week-old infant presenting with near-drowning was medically paralysed and ventilated on admission. Status epilepticus was found on cerebral function monitoring, without which the diagnosis would have been missed or delayed for many hours. This case illustrates the value of cerebral function monitoring for patients in intensive care, where clinical signs of seizure activity are frequently masked by paralysis and sedation. Conclusion: Limited availability of electroencephalogram (EEG) and cerebral function monitoring (CFM) in paediatric intensive care may inadvertently delay diagnosis and appropriate treatments and so adversely affect outcomes. We propose that round-the-clock cerebral function and/or EEG monitoring should be available in all centres that provide paediatric intensive care

    Multiple roles of Activin/Nodal, bone morphogenetic protein, fibroblast growth factor and Wnt/beta-catenin signalling in the anterior neural patterning of adherent human embryonic stem cell cultures

    Get PDF
    Several studies have successfully produced a variety of neural cell types from human embryonic stem cells (hESCs), but there has been limited systematic analysis of how different regional identities are established using well-defined differentiation conditions. We have used adherent, chemically defined cultures to analyse the roles of Activin/Nodal, bone morphogenetic protein (BMP), fibroblast growth factor (FGF) and Wnt/beta-catenin signalling in neural induction, anteroposterior patterning and eye field specification in hESCs. We show that either BMP inhibition or activation of FGF signalling is required for effective neural induction, but these two pathways have distinct outcomes on rostrocaudal patterning. While BMP inhibition leads to specification of forebrain/midbrain positional identities, FGF-dependent neural induction is associated with strong posteriorization towards hindbrain/spinal cord fates. We also demonstrate that Wnt/beta-catenin signalling is activated during neural induction and promotes acquisition of neural fates posterior to forebrain. Therefore, inhibition of this pathway is needed for efficient forebrain specification. Finally, we provide evidence that the levels of Activin/Nodal and BMP signalling have a marked influence on further forebrain patterning and that constitutive inhibition of these pathways represses expression of eye field genes. These results show that the key mechanisms controlling neural patterning in model vertebrate species are preserved in adherent, chemically defined hESC cultures and reveal new insights into the signals regulating eye field specification

    How accurate are digital symptom assessment apps for suggesting conditions and urgency advice? A clinical vignettes comparison to GPs

    No full text
    Objectives To compare breadth of condition coverage, accuracy of suggested conditions and appropriateness of urgency advice of eight popular symptom assessment apps.Design Vignettes study.Setting 200 primary care vignettes.Intervention/comparator For eight apps and seven general practitioners (GPs): breadth of coverage and condition-suggestion and urgency advice accuracy measured against the vignettes’ gold-standard.Primary outcome measures (1) Proportion of conditions ‘covered’ by an app, that is, not excluded because the user was too young/old or pregnant, or not modelled; (2) proportion of vignettes with the correct primary diagnosis among the top 3 conditions suggested; (3) proportion of ‘safe’ urgency advice (ie, at gold standard level, more conservative, or no more than one level less conservative).Results Condition-suggestion coverage was highly variable, with some apps not offering a suggestion for many users: in alphabetical order, Ada: 99.0%; Babylon: 51.5%; Buoy: 88.5%; K Health: 74.5%; Mediktor: 80.5%; Symptomate: 61.5%; Your.MD: 64.5%; WebMD: 93.0%. Top-3 suggestion accuracy was GPs (average): 82.1%±5.2%; Ada: 70.5%; Babylon: 32.0%; Buoy: 43.0%; K Health: 36.0%; Mediktor: 36.0%; Symptomate: 27.5%; WebMD: 35.5%; Your.MD: 23.5%. Some apps excluded certain user demographics or conditions and their performance was generally greater with the exclusion of corresponding vignettes. For safe urgency advice, tested GPs had an average of 97.0%±2.5%. For the vignettes with advice provided, only three apps had safety performance within 1 SD of the GPs—Ada: 97.0%; Babylon: 95.1%; Symptomate: 97.8%. One app had a safety performance within 2 SDs of GPs—Your.MD: 92.6%. Three apps had a safety performance outside 2 SDs of GPs—Buoy: 80.0% (p<0.001); K Health: 81.3% (p<0.001); Mediktor: 87.3% (p=1.3×10-3).Conclusions The utility of digital symptom assessment apps relies on coverage, accuracy and safety. While no digital tool outperformed GPs, some came close, and the nature of iterative improvements to software offers scalable improvements to care
    corecore