25 research outputs found

    The influence of an applied magnetic field on the self-assembly of magnetic nanogels

    Full text link
    Using Langevin dynamics simulations, we investigate the self-assembly of magnetic nanogels in the presence of applied magnetic fields of moderate strength. We find that even weak fields lead to drastic changes in the structure factors of both, the embedded magnetic nanoparticles and of whole nanogel particles. Nanogels assemble by uniting magnetic particle clusters forming inter-gel bridges. At zero field the average amount of such bridges for a pair of nanogels is close to one, whereas even for weak fields it fastly doubles. Rapid growth of cluster size at low values of the applied field is followed by a broad region of slow increase, caused by the mechanical constraints imposed the polymer matrix. The influence of the latter manifests itself in both, the slow growth of the magnetisation curve at intermediate fields and the slow decay of the total Zeeman energy. © 2020This research has been supported by the Russian Science Foundation Grant 19-72-00209 . Authors are grateful to A. O. Ivanov for valuable discussions concerning structure factors and to E. S. Pyanzina for providing the code for calculation of chain partition functions in an applied magnetic field. The work was also supported by the FWF START-Projekt Y 627-N27 . Simulations were performed in the Vienna Scientific Cluster (VSC3)

    Suspensions of magnetic nanogels at zero field: Equilibrium structural properties

    Full text link
    Magnetic nanogels represent a cutting edge of magnetic soft matter research due to their numerous potential applications. Here, using Langevin dynamics simulations, we analyse the influence of magnetic nanogel concentration and embedded magnetic particle interactions on the self-assembly of magnetic nanogels at zero field. For this, we calculated radial distribution functions and structure factors for nanogels and magnetic particles within them. We found that, in comparison to suspensions of free magnetic nanoparticles, where the self-assembly is already observed if the interparticle interaction strength exceeds the thermal fluctuations by approximately a factor of three, self-assembly of magnetic nanogels only takes place by increasing such ratio above six. This magnetic nanogel self-assembly is realised by means of favourable close contacts between magnetic nanoparticles from different nanogels. It turns out that for high values of interparticle interactions, corresponding to the formation of internal rings in isolated nanogels, in their suspensions larger magnetic particle clusters with lower elastic penalty can be formed by involving different nanogels. Finally, we show that when the self-assembly of these nanogels takes place, it has a drastic effect on the structural properties even if the volume fraction of magnetic nanoparticles is low. © 2019 Elsevier B.V.This research has been supported by the Russian Science Foundation Grant No. 19-12-00209 . Authors acknowledge support from the Austrian Research Fund (FWF), START-Projekt Y 627-N27. Computer simulations were performed at the Vienna Scientific Cluster (VSC-3)

    Behaviour of a Magnetic Nanogel in a Shear Flow

    Full text link
    Magnetic nanogels (MNG) – soft colloids made of polymer matrix with embedded in it magnetic nanoparticles (MNPs) – are promising magneto-controllable drug carriers. In order to develop this potential, one needs to clearly understand the relationship between nanogel magnetic properties and its behaviour in a hydrodynamic flow. Considering the size of the MNG and typical time and velocity scales involved in their nanofluidics, experimental characterisation of the system is challenging. In this work, we perform molecular dynamics (MD) simulations combined with the Lattice-Boltzmann (LB) scheme aiming at describing the impact of the shear rate (γ̇) on the shape, magnetic structure and motion of an MNG. We find that in a shear flow the centre of mass of an MNG tends to be in the centre of a channel and to move preserving the distance to both walls. The MNG monomers along with translation are involved in two more types of motion, they rotate around the centre of mass and oscillate with respect to the latter. It results in synchronised tumbling and wobbling of the whole MNG accompanied by its volume oscillates. The fact the an MNG is a highly compressible and permeable for the carrier liquid object makes its behaviour different from that predicted by classical Taylor-type models. We show that the frequency of volume oscillations and rotations are identical and are growing function of the shear rate. We find that the stronger magnetic interactions in the MNG are, the higher is the frequency of this complex oscillatory motion, and the lower is its amplitude. Finally, we show that the oscillations of the volume lead to the periodic changes in MNG magnetic energy. © 2021 Elsevier B.V.This research has been supported by the Russian Science Foundation Grant No.19-12-00209. Computer simulations were performed at the Vienna Scientific Cluster (VSC). I.S.N. and S.S.K. are grateful to Vienna Doctoral School Physics, Doctoral College DCAMF and were partially supported by FWF Project SAM P 33748. The authors thank Pedro S. Sánchez and Dr. Rudolf Weeber for fruitful discussions and useful recommendations

    ORB5: a global electromagnetic gyrokinetic code using the PIC approach in toroidal geometry

    Get PDF
    This paper presents the current state of the global gyrokinetic code ORB5 as an update of the previous reference [Jolliet et al., Comp. Phys. Commun. 177 409 (2007)]. The ORB5 code solves the electromagnetic Vlasov-Maxwell system of equations using a PIC scheme and also includes collisions and strong flows. The code assumes multiple gyrokinetic ion species at all wavelengths for the polarization density and drift-kinetic electrons. Variants of the physical model can be selected for electrons such as assuming an adiabatic response or a ``hybrid'' model in which passing electrons are assumed adiabatic and trapped electrons are drift-kinetic. A Fourier filter as well as various control variates and noise reduction techniques enable simulations with good signal-to-noise ratios at a limited numerical cost. They are completed with different momentum and zonal flow-conserving heat sources allowing for temperature-gradient and flux-driven simulations. The code, which runs on both CPUs and GPUs, is well benchmarked against other similar codes and analytical predictions, and shows good scalability up to thousands of nodes

    Global turbulence features across marginality and non-local pedestal-core interactions

    Get PDF
    Spatially non-local aspects of turbulent transport in tokamak plasmas are examined with global gyrokinetic simulations using the ORB5 code. Inspired by very accurate measurements in the TCV tokamak in L-mode, we initialise plasma profiles with constant logarithmic gradients in the core and constant linear gradients in the 'pedestal' (ρ[0.8,1]\rho \in [0.8,\,1]). The main finding is that transport in the core is strongly affected by the presence of pedestal gradients. This non-local pedestal-core coupling appears to be correlated with the appearance of repetitive avalanches that propagate across both pedestal and core regions. Below a certain threshold value in pedestal gradient, no well-defined frequency is found for avalanches. Above this threshold, a well-defined frequency shows up, which roughly matches that of the local geodesic acoustic mode (GAM) frequency near the plasma edge and is thus well below the local GAM frequency in the core: this behaviour is very similar to the global coherent mode structure observed in TCV. Above this threshold in pedestal gradient, the core transport increases sharply: there is therefore a non-locality in marginality. The probability density functions (PDFs) of density, temperature, temperature gradient and potential are found to have nearly Gaussian distributions, whereas the heat flux can have, in the presence of avalanches, a more or less strongly positively skewed PDF, which could be fitted by a log-normal distribution. The skewness of the heat flux is found to be radially and non-locally dependent: its value in the plasma core critically depends on the presence of gradients in the pedestal. The relation flux versus gradient is examined in detail. The local instantaneous flux versus gradient relation shows a hysteresis behaviour during an avalanche but no clear correlation, unlike the flux and zonal flow (ZF) shearing rate, which are anti-correlated: flux is higher when shearing rate is lower. This leads to corrugated time-averaged radial profiles of transport, heat and temperature gradient, with heat diffusivity having local maxima where the ZF shearing rate goes to zero and temperature gradient has local minima. Finally, we show how the flux versus gradient relation can be analysed locally for series of simulations with different averaged gradients

    Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development

    Get PDF
    An overview of recent results obtained at the tokamak ASDEX Upgrade (AUG) is given. A work flow for predictive profile modelling of AUG discharges was established which is able to reproduce experimental H-mode plasma profiles based on engineering parameters only. In the plasma center, theoretical predictions on plasma current redistribution by a dynamo effect were confirmed experimentally. For core transport, the stabilizing effect of fast ion distributions on turbulent transport is shown to be important to explain the core isotope effect and improves the description of hollow low-Z impurity profiles. The L-H power threshold of hydrogen plasmas is not affected by small helium admixtures and it increases continuously from the deuterium to the hydrogen level when the hydrogen concentration is raised from 0 to 100%. One focus of recent campaigns was the search for a fusion relevant integrated plasma scenario without large edge localised modes (ELMs). Results from six different ELM-free confinement regimes are compared with respect to reactor relevance: ELM suppression by magnetic perturbation coils could be attributed to toroidally asymmetric turbulent fluctuations in the vicinity of the separatrix. Stable improved confinement mode plasma phases with a detached inner divertor were obtained using a feedback control of the plasma β. The enhanced D α H-mode regime was extended to higher heating power by feedback controlled radiative cooling with argon. The quasi-coherent exhaust regime was developed into an integrated scenario at high heating power and energy confinement, with a detached divertor and without large ELMs. Small ELMs close to the separatrix lead to peeling-ballooning stability and quasi continuous power exhaust. Helium beam density fluctuation measurements confirm that transport close to the separatrix is important to achieve the different ELM-free regimes. Based on separatrix plasma parameters and interchange-drift-Alfvén turbulence, an analytic model was derived that reproduces the experimentally found important operational boundaries of the density limit and between L- and H-mode confinement. Feedback control for the X-point radiator (XPR) position was established as an important element for divertor detachment control. Stable and detached ELM-free phases with H-mode confinement quality were obtained when the XPR was moved 10 cm above the X-point. Investigations of the plasma in the future flexible snow-flake divertor of AUG by means of first SOLPS-ITER simulations with drifts activated predict beneficial detachment properties and the activation of an additional strike point by the drifts

    Progress from ASDEX Upgrade experiments in preparing the physics basis of ITER operation and DEMO scenario development

    Get PDF

    Overview of physics studies on ASDEX Upgrade

    Get PDF
    The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m-1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle - measured for the first time - or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO
    corecore