6 research outputs found

    Modified arithmetic optimization algorithm with Deep Learning based data analytics for depression detection

    Get PDF
    Depression detection is the procedure of recognizing the individuals exhibiting depression symptoms, which is a mental illness that is characterized by hopelessness, feelings of sadness, persistence and loss of interest in day-to-day activities. Depression detection in Social Networking Sites (SNS) is a challenging task due to the huge volume of data and its complicated variations. However, it is feasible to detect the depression of the individuals by examining the user-generated content utilizing Deep Learning (DL), Machine Learning (ML) and Natural Language Processing (NLP) approaches. These techniques demonstrate optimum outcomes in early and accurate detection of depression, which in turn can support in enhancing the treatment outcomes and avoid more complications related to depression. In order to provide more insights, both ML and DL approaches possibly offer unique features. These features support the evaluation of unique patterns that are hidden in online interactions and address them to expose the mental state amongst the SNS users. In the current study, we develop the Modified Arithmetic Optimization Algorithm with Deep Learning for Depression Detection in Twitter Data (MAOADL-DDTD) technique. The presented MAOADL-DDTD technique focuses on identification and classification of the depression sentiments in Twitter data. In the presented MAOADL-DDTD technique, the noise in the tweets is pre-processed in different ways. In addition to this, the Glove word embedding technique is used to extract the features from the preprocessed data. For depression detection, the Sparse Autoencoder (SAE) model is applied. The MAOA is used for optimum hyperparameter tuning of the SAE approach so as to optimize the performance of the SAE model, which helps in accomplishing better detection performance. The MAOADL-DDTD algorithm is simulated using the benchmark database and experimentally validated. The experimental values of the MAOADL-DDTD methodology establish its promising performance over another recent state-of-the-art approaches

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Differential Impact of Specific Amino Acid Residues on the Characteristics of Avian Influenza Viruses in Mammalian Systems

    No full text
    Avian influenza virus (AIV) H9N2 was declared to be endemic in birds of the Middle East, in particular in Egypt, with multiple cases of human infections. Despite concerns about the pandemic threat posed by H9N2 AIV, due to the fact that its receptor specificity is similar to that of human influenza viruses, its morbidity and mortality rates in humans are so far negligible. However, the acquisition of specific adaptive amino acid (aa) mutations in the viral polymerase can enhance cross-species transmission of the virus itself or of reassortants, which gained these changes. The polymerase basic protein 2 (PB2) is one of the key determinants for AIV adaptation towards mammals. Although mammalian pathogenicity-related mutations (MPMs) in PB2 genes were identified in different AIVs, the specific effect of single or multiple mutations on viral fitness has not been compared so far. Here, we studied the effect of the aa K at position 591, which was frequently reported in the PB2 of Egyptian H9N2 isolates, on the proliferation efficiency and polymerase activity of an H5N1 (clade 2.2.1.2) AIV already carrying the mammalian adaptive mutation 627K. Using reverse genetics, we generated a set of recombinant parental strains and H5N1 variants carrying the avian-like 591Q/627E or mammalian-like adaptive mutations 591K/627K (H5N1EGY, H9N2EGY, H5N1PB2-H9N2EGY, H5N1H9N2_PB2_K591Q, H5N1PB2_K627E, H5N1PB2_K627E/591K, H5N1PB2_627K/591K). Regardless of the avian-like 627E or the mammalian-adaptive 627K, both variants carrying the 591K (H5N1PB2_K627E/591K, H5N1PB2_627K/591K) and the reassortant H5N1PB2-H9N2EGY replicated to significantly higher levels in mammalian continuous MDCK and Calu-3 cell lines and primary normal human bronchial epithelial cells than the parental H5N1EGY virus (carrying solely the 627K adaptive mutation). Expectedly, the H5N1 variants carrying avian-like PB2 mutations (H5N1H9N2_PB2_K591Q, H5N1PB2_K627E) replicated to significantly lower levels than the parental H5N1EGY virus in the predefined primary and continuous mammalian cell line systems. Consistently, the activity of H5N1 subtype AIV polymerase complexes comprising PB2 segments with singular 591K or combined with 627K was significantly enhanced when compared to parental H5N1EGY and H9N2EGY. This study emphasizes the significant impact of 591K containing PB2 segments in the background of H5N1 polymerase on viral fitness in addition to the well-known MPM 627K in vitro

    Global economic burden of unmet surgical need for appendicitis

    No full text
    Background There is a substantial gap in provision of adequate surgical care in many low- and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 92492millionusingapproach1and92 492 million using approach 1 and 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 95004millionusingapproach1and95 004 million using approach 1 and 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially

    Global economic burden of unmet surgical need for appendicitis

    No full text
    Background There is a substantial gap in provision of adequate surgical care in many low- and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 92492millionusingapproach1and92 492 million using approach 1 and 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 95004millionusingapproach1and95 004 million using approach 1 and 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially

    Using the internet of things in smart energy systems and networks

    No full text
    corecore