185 research outputs found

    Information representation in an oscillating neural field model modulated by working memory signals

    Get PDF
    We study how stimulus information can be represented in the dynamical signatures of an oscillatory model of neural activity—a model whose activity can be modulated by input akin to signals involved in working memory (WM). We developed a neural field model, tuned near an oscillatory instability, in which the WM-like input can modulate the frequency and amplitude of the oscillation. Our neural field model has a spatial-like domain in which an input that preferentially targets a point—a stimulus feature—on the domain will induce feature-specific activity changes. These feature-specific activity changes affect both the mean rate of spikes and the relative timing of spiking activity to the global field oscillation—the phase of the spiking activity. From these two dynamical signatures, we define both a spike rate code and an oscillatory phase code. We assess the performance of these two codes to discriminate stimulus features using an information-theoretic analysis. We show that global WM input modulations can enhance phase code discrimination while simultaneously reducing rate code discrimination. Moreover, we find that the phase code performance is roughly two orders of magnitude larger than that of the rate code defined for the same model solutions. The results of our model have applications to sensory areas of the brain, to which prefrontal areas send inputs reflecting the content of WM. These WM inputs to sensory areas have been established to induce oscillatory changes similar to our model. Our model results suggest a mechanism by which WM signals may enhance sensory information represented in oscillatory activity beyond the comparatively weak representations based on the mean rate activity

    Saccade Generation by the Frontal Eye Fields in Rhesus Monkeys Is Separable from Visual Detection and Bottom-Up Attention Shift

    Get PDF
    The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area’s role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area’s functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory

    Oculomotor Evidence for Top-Down Control following the Initial Saccade

    Get PDF
    The goal of the current study was to investigate how salience-driven and goal-driven processes unfold during visual search over multiple eye movements. Eye movements were recorded while observers searched for a target, which was located on (Experiment 1) or defined as (Experiment 2) a specific orientation singleton. This singleton could either be the most, medium, or least salient element in the display. Results were analyzed as a function of response time separately for initial and second eye movements. Irrespective of the search task, initial saccades elicited shortly after the onset of the search display were primarily salience-driven whereas initial saccades elicited after approximately 250 ms were completely unaffected by salience. Initial saccades were increasingly guided in line with task requirements with increasing response times. Second saccades were completely unaffected by salience and were consistently goal-driven, irrespective of response time. These results suggest that stimulus-salience affects the visual system only briefly after a visual image enters the brain and has no effect thereafter

    Coordinated Activity of Ventral Tegmental Neurons Adapts to Appetitive and Aversive Learning

    Get PDF
    Our understanding of how value-related information is encoded in the ventral tegmental area (VTA) is based mainly on the responses of individual putative dopamine neurons. In contrast to cortical areas, the nature of coordinated interactions between groups of VTA neurons during motivated behavior is largely unknown. These interactions can strongly affect information processing, highlighting the importance of investigating network level activity. We recorded the activity of multiple single units and local field potentials (LFP) in the VTA during a task in which rats learned to associate novel stimuli with different outcomes. We found that coordinated activity of VTA units with either putative dopamine or GABA waveforms was influenced differently by rewarding versus aversive outcomes. Specifically, after learning, stimuli paired with a rewarding outcome increased the correlation in activity levels between unit pairs whereas stimuli paired with an aversive outcome decreased the correlation. Paired single unit responses also became more redundant after learning. These response patterns flexibly tracked the reversal of contingencies, suggesting that learning is associated with changing correlations and enhanced functional connectivity between VTA neurons. Analysis of LFP recorded simultaneously with unit activity showed an increase in the power of theta oscillations when stimuli predicted reward but not an aversive outcome. With learning, a higher proportion of putative GABA units were phase locked to the theta oscillations than putative dopamine units. These patterns also adapted when task contingencies were changed. Taken together, these data demonstrate that VTA neurons organize flexibly as functional networks to support appetitive and aversive learning

    The neuropsychology of consumer behavior and marketing

    Full text link
    Insights and tools from neuroscience are of great value to marketers. Neuroscientific techniques allow consumer researchers to understand the fundamental neural underpinnings of psychological processes that drive consumer behavior, and elucidate the “black box” that is the consumer’s mind. In the following review, we provide an overview of the fundamental tenets of consumer neuroscience, selectively outline key areas of marketing that consumer neuroscience has contributed to, compare and contrast neuroscientific tools and methods, and discuss future directions for neurophysiological work in marketing. In doing so, we illustrate the broad substantive landscape that neuroscience can add value to within marketing.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141563/1/arcp1006.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141563/2/arcp1006_am.pd

    The effects of the dopamine agonist rotigotine on hemispatial neglect following stroke

    Get PDF
    Hemispatial neglect following right-hemisphere stroke is a common and disabling disorder, for which there is currently no effective pharmacological treatment. Dopamine agonists have been shown to play a role in selective attention and working memory, two core cognitive components of neglect. Here, we investigated whether the dopamine agonist rotigotine would have a beneficial effect on hemispatial neglect in stroke patients. A double-blind, randomized, placebo-controlled ABA design was used, in which each patient was assessed for 20 testing sessions, in three phases: pretreatment (Phase A1), on transdermal rotigotine for 7-11 days (Phase B) and post-treatment (Phase A2), with the exact duration of each phase randomized within limits. Outcome measures included performance on cancellation (visual search), line bisection, visual working memory, selective attention and sustained attention tasks, as well as measures of motor control. Sixteen right-hemisphere stroke patients were recruited, all of whom completed the trial. Performance on the Mesulam shape cancellation task improved significantly while on rotigotine, with the number of targets found on the left side increasing by 12.8% (P = 0.012) on treatment and spatial bias reducing by 8.1% (P = 0.016). This improvement in visual search was associated with an enhancement in selective attention but not on our measures of working memory or sustained attention. The positive effect of rotigotine on visual search was not associated with the degree of preservation of prefrontal cortex and occurred even in patients with significant prefrontal involvement. Rotigotine was not associated with any significant improvement in motor performance. This proof-of-concept study suggests a beneficial role of dopaminergic modulation on visual search and selective attention in patients with hemispatial neglect following stroke

    The role of neuromodulators in selective attention

    No full text
    Several classes of neurotransmitters exert modulatory effects on a broad and diverse population of neurons throughout the brain. Some of these neuromodulators, especially acetylcholine and dopamine, have long been implicated in the neural control of selective attention. We review recent evidence and evolving ideas about the importance of these neuromodulatory systems in attention, particularly visual selective attention. We conclude that, although our understanding of their role in the neural circuitry of selective attention remains rudimentary, recent research has begun to suggest unique contributions of neuromodulators to different forms of attention, such as bottom-up and top-down attention. From correlates to causes The majority of work on the neural mechanisms of selective attention, particularly visual selective attention (see Glossary), has focused on the changes in neural activity observed in epochs in which particular stimuli are either behaviorally relevant or irrelevant to a particular task at hand. Changes in neural activity, whether measured in the spiking activity of individual neurons (e.g., [1]) or populations of neurons (e.g., Largely separate from these studies are studies that have addressed the long-suspected role of particular neuromodulators in attentional control in a variety of species, including humans, in both normal and clinical subject
    corecore