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Information representation in an
oscillating neural field model
modulated by working memory
signals

William H. Nesse1*, Kelsey L. Clark2 and Behrad Noudoost2

1Department of Mathematics, University of Utah, Salt Lake City, UT, United States, 2Department of

Ophthalmology, University of Utah, Salt Lake City, UT, United States

We study how stimulus information can be represented in the dynamical

signatures of an oscillatory model of neural activity—a model whose activity can

be modulated by input akin to signals involved in working memory (WM). We

developed a neural field model, tuned near an oscillatory instability, in which the

WM-like input can modulate the frequency and amplitude of the oscillation. Our

neural field model has a spatial-like domain in which an input that preferentially

targets a point—a stimulus feature—on the domain will induce feature-specific

activity changes. These feature-specific activity changes a�ect both the mean

rate of spikes and the relative timing of spiking activity to the global field

oscillation—the phase of the spiking activity. From these two dynamical signatures,

we define both a spike rate code and an oscillatory phase code. We assess

the performance of these two codes to discriminate stimulus features using an

information-theoretic analysis. We show that global WM input modulations can

enhance phase code discrimination while simultaneously reducing rate code

discrimination. Moreover, we find that the phase code performance is roughly

two orders of magnitude larger than that of the rate code defined for the same

model solutions. The results of ourmodel have applications to sensory areas of the

brain, to which prefrontal areas send inputs reflecting the content of WM. These

WM inputs to sensory areas have been established to induce oscillatory changes

similar to ourmodel. Ourmodel results suggest amechanism bywhichWM signals

may enhance sensory information represented in oscillatory activity beyond the

comparatively weak representations based on the mean rate activity.

KEYWORDS

neural coding, phase, information theory, working memory, computational model

Introduction

Signals from cortical areas reflecting cognitive states, including working memory (WM),

have been shown to modulate responses to incoming sensory stimuli (Desimone and

Duncan, 1995; Humphreys et al., 1998; Lee et al., 2005; Mitchell et al., 2007; Fries, 2009,

2015; Churchland et al., 2010; Bosman et al., 2012; Vinck et al., 2013; van Kerkoerle et al.,

2014; Womelsdorf and Everling, 2015; Engel et al., 2016; Michalareas et al., 2016; Moore

and Zirnsak, 2017). Several modeling studies have explored these effects (Brunel and Wang,

2001; Ardid et al., 2007; Lakatos et al., 2008; Kopell et al., 2011; Lee et al., 2013; Kanashiro

et al., 2017). Firing rates of sensory cortical neurons are not modulated, or modulated only

weakly, by WM alone (Lee et al., 2005; Zaksas and Pasternak, 2006; Mendoza-Halliday et al.,

2014). In the presence of a sensory signal, firing rates of neurons in these sensory areas are
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enhanced when the stimulus in their receptive field is the

target of WM (Merrikhi et al., 2018). However, these observed

enhancements to firing rate are modest, and it is unknown how

such small changes could account for the cognitive enhancements

thatWM produces (Bahmani et al., 2018). In addition to changes in

mean activity,WM also induces changes to oscillations in local field

potentials (LFPs) (Siegel et al., 2008; Liebe et al., 2012; Daume et al.,

2017) and the timing of spikes relative to these oscillations (Lee

et al., 2005; Bahmani et al., 2018). These oscillatory effects suggest a

potential role of oscillatory phase of spikes in encoding information

about a stimulus.

Prior results by our group (Bahmani et al., 2018) have shown

that in a WM task, when a receptive field of an extrastriate

visual neuron is in a remembered location, recordings show

increased LFP oscillatory power and peak-power frequency in the

α-β band (8–25 Hz), increasing spike phase locking (SPL) to

the LFP oscillation. Stimuli present in the visual field also have

been shown to increase LFP oscillatory power and peak-power

frequency as a function of stimulus contrast (Roberts et al., 2013).

Notably, cortical beta oscillations exhibit a diffuse relationship

with individual spiking cells and show weak-to-moderate phase

locking to the local field. Modeling work by our group (Nesse et al.,

2021a) has also identified how WM signals to recurrent spiking

networks incorporating excitatory (e) and inhibitory (i) cells could

modulate emergent network oscillations and SPL, consistent with

experimental findings in the study by Bahmani et al. (2018).

While this prior modeling study identified the role of e- and i-

cells coordinating these oscillatory effects, it suggest two further

questions. First, is there a dynamical mechanism that gives rise

to such oscillations and their modulation by WM signals? Second,

does stimulus-driven changes to the timing of spike activity relative

to the LFP phase serve as an effective means of encoding sensory

information, and can it be enhanced by WM input?

To address these aforementioned questions, we devised an

oscillatory mean field type or neural mass model (Wilson

and Cowan, 1972) that exhibits oscillations. We find that the

constellation of oscillatory effects due to WM (top down) input

and stimulus (bottom up) input observed in previous studies

(Roberts et al., 2013; Bahmani et al., 2018) are consistent with

a dynamical system tuned near a supercritical Hopf instability,

in which external input—either WM-like or sensory-like input–

serves as a bifurcation parameter. Such instabilities give rise to

low amplitude oscillations whose amplitude can be modulated by

input, but whose amplitude is continuous with zero at the point of

bifurcation.

Based on the hypothesis of supercritical Hopf instability, we

identified a parameter regime in our model that exhibits such

a tuning and verified that our neural mass model shows good

correspondence with a large-N spiking model network. Using this

parameter tuning, we then expanded our neural mass model to a

neural field model by including a spatial-like domain, representing

a stimulus feature parameter (Ben-Yishai et al., 1997; Shriki et al.,

2003; Coombes et al., 2014). The activity of the neural field model

can vary its responses to stimulus input features and can represent

stimulus information in themean rate response–the rate code—and

the timing of activity relative to the phase of the global oscillation–

the phase code. Using these two encodings, we then measured

stimulus information coding performance of bottom-up inputs.

We establish that the phase-based coding performance is positively

enhanced by increased WM-like signals that increase oscillation

amplitude and frequency, whereas the rate coding performance

is reduced by the same WM input. Additionally, we show phase

coding performance as a function of stimulus contrast that exhibits

increased gain in the presence of WM input. Conversely, rate

coding performance shows reduced stimulus contrast gain in the

presence of WM input.

Furthermore, we find that phase code performance is roughly

two orders of magnitude larger than the rate code. This large

coding disparity can be explained by the nature of relaxation

oscillations of local e-i network dynamics. The oscillations arise

from the interplay between excitatory rising phase activity being

curtailed by the delayed response of the inhibitory downward

phase of the cycle. By definition, mean firing rate representations

average over this oscillating cycle. As such, the adaptive inhibitory

response partly obscures the information contained stimulus-

induced activity, whereas the time course of e-i cycle of activity

retains the underlying stimulus informationmore effectively (Nesse

et al., 2021b).

Methods

Neural mass model

To assess sensory coding performance, we used the neural

field model which was constructed from a spatial continuum

of neural mass models connected through a spatial kernel.

As such, we must first construct the neural mass model. We

developed a neural mass model inspired by Wilson and Cowan

(1972) representing a population-average activity of a recurrently

connected network (i.e., a neural mass), in which u(t) and

v(t) represent the mean synaptic activity of e- and i- cells,

respectively.

τe
du

dt
=− u+ fσ (weeu− weiv+ Ie),

τi
dv

dt
=− v+ fσ (wieu− wiiv+ Ii),

(1)

where the function fσ (I) in Eq. 1 is a “F-I” function representing

the firing rate of a neural mass as a function of the average

input current I. The F-I curve is parameterized by σ > 0 that

controls the overall slope or firing rate gain, resulting from input

current changes. The F-I curve is derived as the inverse of the

mean first passage time of a leaky integrate and fire (LIF) model

driven by input current I and uncorrelated noise with strength

σ (see below). The wjk is synaptic weight between and within

cell types, and Ij is an offset current for j, k = e, i. We chose

τe = 5 ms and τi = 15 ms monoexponential decay timescales,

consistent with common estimates of effective excitatory AMPA

receptor and inhibitory GABAA decay timescales, respectively

(Kapur et al., 1997; Xiang et al., 1998). We have chosen synaptic

weights where the inter-population connections—wei,wie—were

roughly double that of the intra-population connections—wee,wii

(see Table 1). This choice is consistent with the findings that

e- and i-cell populations exhibit strong inhibition-mediated
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stabilization of the network (Sanzeni et al., 2020; Sadeh and

Clopath, 2021). A complete list of parameter values is presented in

Table 1.

The neural mass model equilibria and stability of equilibria

were computed over a wide parameter scan of input I and firing

rate gain σ parameters. Both e- and i-cells received input controlled

by a single I parameter, where Ie = I and Ii = I − 0.5, where

the inhibitory offset “−0.5” in Ii reflects higher spike thresholds

for inhibitory cells that are typically used in neural mass models

(Angelucci et al., 2017). Equilibria (u∗, v∗) were solved using a

standard iterative Newton’s method (un+1, vn+1) = (un, vn) −
J−1((un, vn))F((un, vn)), where F is the differential equation (DE)

right hand side and J is the Jacobian matrix linearization of the

DE. Stability of the equilibrium was obtained by computing the

eigenvalues of the linearized model (i.e., the Jacobian matrix).

Where Hopf instabilities were observed (see Results), we computed

the first Lyapunov coefficient ℓ1 to determine the type of Hopf

bifurcation—supercritical (ℓ1 < 0) or subcritical (ℓ1 > 0)—

according to the standard formula (Kuznetzov, 1998).

F-I curve derivation

The firing rate as a function of input current curve fσ (I) was

derived from a LIF model stochastic differential equation (SDE)

and subjected to white noise σξ (t) in which 〈ξ (t)〉 = 0 and

〈ξ (t)ξ (t + τ )〉 = δt,t+τ (Stein, 1965) are given by

C
dV

dt
= g(Vl − V)+ I + σξ (t), (2)

with V(t) being the membrane voltage (mV); C = 1 the

membrane capacitance in micro-Farads; g = 1/15 the leak

conductance in micro Siemens; Vl = −65 mV is reversal leak

potential; and I is the input current. With these parameters, a

I = 1 nA of non-fluctuating input will induce the membrane

to reach the spike threshold voltage Vt = −50. With the

addition of fluctuating white noise input σξ (t) and assuming a

reflecting boundary for very large negative voltages, the mean first

passage time T(V; I, σ ) for our LIF model (Eq. 2) to reach spiking

threshold, while initially starting at V(0) = Vr , solves the following

differential equation with absorbing spike threshold boundary

condition (Gardiner, 2009):

(I + gVl − gV)
∂T

∂V
+ σ 2

2

∂2T

∂V2
= −1,

T(Vt : I, σ ) = 0.

(3)

The solution of (Eq. 3) is expressed as follows:

ψ(V) = e
2V(I+gVl)−gV2

σ2 , (4)

T(V; I, σ ) = 2

σ 2

∫ Vt

V
ψ(s)−1

∫ s

−∞
ψ(ξ )dξ ds. (5)

The mean firing rate fσ (I) of the LIF model is then given by the

inverse of the first passage time

fσ (I) ≡
1, 000

T(Vl; I, σ )
, (6)

expressed in units of Hertz.

The above mean first passage time is the spiking time of the

LIFmodel in the diffusion limit of temporally uncorrelated synaptic

δ-impulses (see Stein, 1965; Sanzeni et al., 2020).

Obtaining the mean field model from a
spiking LIF network

Considering a network of LIF model neurons as in Eq. 2,

consisting of j = 1, 2, . . . ,Ne and ℓ = 1, 2, . . . ,Ni numbers

of e- and i-cell constituents, each cell emits spikes at times tj,k
and tℓ,k for the spike timing index k, respectively. For simplicity,

we assume that the network is all-to-all connected with uniform

synaptic strength, in which the input current I to each e- and i-cell

models is

Ie = I0e + weeû(t)+ weiv̂(t),

Ii = I0i + wieû(t)+ wiiv̂(t)

respectively, where the synaptic currents û and v̂ are given as

follows:

τe
dû

dt
=− û+ �

Ne

Ne
∑

j=1

∑

k

δ(t − tj,k),

τi
dv̂

dt
=− v̂+ �

Ni

Ni
∑

ℓ=1

∑

k

δ(t − tℓ,k),

(7)

where δ is the Dirac delta functional and � is a synaptic strength

parameter. We define the integral Z of either above sums in (Eq. 7)

over a small time interval1t ≪ τe, τi to be

Z =
∫ t+1t

t

�

Ne

N
∑

j=1

∑

k

δ(s− tj,k)ds. (8)

In the limit of large Ne and Ni, and the assumption of

Poisson spike emission, the integral (Eq. 8) will have an expectation

approaching themean firing rate multiplied by1t, and the variance

of the integral will limit to zero:

〈Z〉 ∼ fσ (I(t))1t,

Var(Z) ∼ 0.
(9)

Owing to Eq. 9, the sums in Eq. 7 are approximated by mean

firing rates of the e- and i-cells, respectively, in which û → u and

v̂ → v in probability. Therefore, Eq. 1 will approximate themean of

Eq. 7. Note that the synaptic strength can be set by the wjk weights;

so without loss of generality, we set the other strength parameter

� = 1, 000 so that the numerical values of u and v track the mean

firing rate, expressed in spikes per second (Hz).

Notably, in our model, for large Ne and Ni, the variability of

Eq. 7 limits to zero, and consequently, the external Weiner noise

input σξ (t)dt accounts for all of the noisy fluctuating input to each

cell. We choose this limiting case so that we can study emergent

oscillatory dynamics by retaining the standard deviation σ of the

noise as a control parameter. This limiting case contrasts with a

Frontiers inComputationalNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2023.1253234
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Nesse et al. 10.3389/fncom.2023.1253234

different limiting case, in which, in the absence of any external

fluctuating input, a recurrent neuronal network can self-generate

its own variability via deterministic chaos. These networks are

characterized by variance and covariance order parameters, whose

values are determined by self-consistency conditions in which

mean and (co)variability of input of each cell must match its output

(Moreno-Bote et al., 2008; di Volo et al., 2019; Sanzeni et al., 2020).

We have chosen our approach, in which input fluctuations are not

enforced to be self-consistent with output fluctuations of network

elements to allow flexibility to assume that input fluctuations may

be dictated by external inputs, and in addition, we can use the noise

parameter σ , an exploratory tuning parameter, to discover possible

regimes that support oscillatory solutions.

We simulated networks of Ne,Ni = 20, 000 cells to verify that

the spiking network model’s population firing rates are a decent

match to that of the mean field model over 10-s simulations. We

defined the LFP proxy of the network as the average of all currents

to excitatory neurons ILFP(t) = weeu(t) − weiv(t) (Mazzoni et al.,

2015).

Neural field model

The neural field model is a neural mass model extended over a

spatial domain (Coombes et al., 2014), in which nearby regions on

the spatial domain are preferentially connected. We have chosen

a ring topology spatial domain, parameterized by θ ∈ [0,π),

which is intended to represent a hypercolumn-like population, with

each θ-value referring to sub-population of the neural field that is

selectively responsive to a θ-parameterized stimulus feature akin

to a familiar bar visual stimulus with orientation angle θ (Ben-

Yishai et al., 1997; Shriki et al., 2003). The neural field model is

described by u(θ , t), v(θ , t), the e-activity and i-activity for every θ

location on the ring, that solves the integro-differential equation as

follows:

τe
∂u

∂t
=− u+ fσ (W ∗ [weeu− weiv]+ Ie)

τi
∂v

∂t
=− v+ fσ (W ∗ [wieu− wiiv]+ Ii).

(10)

The integral convolution “∗” in Eq. 10 is over the θ-domain—

W∗h =
∫ π

0 W(θ−θ ′)h(θ ′)dθ ′, for any h—and theW(θ) von-Mises

periodic weight kernel:

W(θ) = eκ cos(2θ)

πI0(κ)
. (11)

With this weight kernel (Eq. 11), two points on the ring

at θ and θ ′ will be connected with weight W(θ − θ ′)dθ . The
parameter κ is an inverse variance-like scale parameter, where

increasing κ produces a narrower distribution, and I0(κ) is the

order-zero modified Bessel function of the first kind, which

serves as the normalization constant. We chose the spatial scale

of connection to be sufficiently broad (see Figure 3A top left

sub panel) so as to support spatial stability across the ring.

Moreover, the same spatial scale κ was used for e- and i-cell

populations which also typically result in spatial stability across

the ring (see Ali et al., 2016), giving rise to, for example, a

uniform bulk oscillation (as in Figure 3A). Having a broader

distribution footprint for e- relative to i-cell connection or

a narrower overall scale for each subpopulation (larger κ) is

typically associated with spatial instabilities (Coombes et al.,

2014).

Stimulus inputs are orientation-tuned, given similarly by a

Von-Mises-like distribution function

S(θ) = eκs cos(2(θ−θ0))−κs , (12)

in which the peak strength (set to unity) of the stimulus located at

orientation θ0 = π/2 and the input spread set by κs (see red curve,

Figure 3A bottom left sub panel).

The LFP proxy is defined as the α-β-band filtered e-cell total

input current (10–30 Hz notch filter), averaged over the ring

Ie,tot(t) = 〈W∗[weeu−weiv]+Ie〉θ (seeMazzoni et al., 2015), where

〈·〉θ is the ring average. The phase φ(t) of this resulting oscillating
signal is given by computing the Hilbert transform H of Ie,tot(t)

H(Ie,tot(t)) = Ie,tot(θ , t)+ iA(θ , t), (13)

and then taking the angle argument of the resulting analytic signal:

φ(t) ≡ Arg(Ie,tot + iA)(t). (14)

The phase has an inverse function we defined to be g̃(φ) ≡ t.

On simulations that were analyzed to assess information coding

performance, we included slow-timescale Ornstein-Ulenbeck noise

y(t) to both e- and i-cell input currents Ie and Ii globally to

the entire network (uniformly across all θ-values). While the

origins of the oscillatory dynamics in our model arises from a

deterministic Hopf instability, the purpose of this additional noise

was to introduce variability in the oscillation amplitude and period,

such as those observed in real cortical tissues, as well as to sample

oscillatory dynamics for a fluctuating input near the oscillation

threshold. However, we have not chosen to implement independent

noise inputs across the neural field domain (non-uniform input).

Such non-uniform noise would naturally lead to degraded coding

performance for both phase and rate representations of activity.

The relative degree of degradation for the two codes is an important

question but is not addressed in this article. The dynamics of y are

given by the SDE

τy
dy

dt
= −y+ σy√τyξ (t), (15)

where ξ (t) is uncorrelated zero-mean, unit-variance gaussian white

noise. This SDE (Eq. 15) results in a normal stationary distribution

of currents qwith zero-mean, standard deviation σy, and a temporal

autocorrelation decay timescale τy = 50 ms so that the network

oscillations, which were typically in the ∼20 Hz β-band range

(∼50 ms cycles), showed robust cycle to cycle variability but little

long-timescale multi-cycle correlation.

We wish to study how input modulations akin to WM signals

can modulate the response properties—both rate responses and
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TABLE 1 A list of parameter values of the neural mass and field models.

Parameter Value

Vt −50 mV

Vr −65 mV

Vl −65 mV

C 1 mF

τi 15 ms

τe 5 ms

g 1/15 mS

σ0 5.5

Ie0 −2.31

Ii0 −3.81

1stim 0.018

1WM 0.015

wee 0.9

wii 1.9

wie 1

wei 2

κ 5.0625

κs 20

σy 0.02

τy 50 ms

oscillatory responses—of neural masses within the neural field. In

the absence of any external input, the neural field model parameters

were set to a point near a supercritical Hopf instability where

oscillations were small-amplitude, with an oscillation frequency in

the β-band approximately 15–20 Hz. We ran simulations from this

set point over four levels of a global WM input and four levels

of orientation-selective stimulus input, starting from zero, which

models the effective contrast of the stimulus.We call theseWM0, 1,

2, and 3 levels and stimulus contrast levels 0, 1, 2, and 3. Altogether,

the input to cells can be represented by

Ie(θ , t) = Ie0 + a1stimS(θ)+ b1WM + y(t) (16)

Ii(θ , t) = Ii0 + a1stimS(θ)+ b1WM + y(t),

where1stim and1WM are the current increments for the respective

input levels of stimulus a = 0, 1, 2, 3 and WM b = 0, 1, 2, 3. For the

neural field simulations, we fixed the noise parameter to σ = 5.5.

The complete list of parameter values of the neural mass and field

models are given in Table 1.

Information-theoretic measures of phase
and rate coding

We wanted to test the ability of the neural field ring model to

represent distinct sensory stimuli, so we tested the discriminability

of the neural field activity across distinct stimuli positions on the

ring. We gave elevated input centered at θ0 = π/2 according to

Eq. 12 and assigned this to be the favored stimulus region, whereas

elsewhere were less stimulated regions.

Each oscillation cycle is characterized by a phase decomposition

φ(t) of the LFP proxy (see above) in which φ ∈ (−π ,π]. A typical

cell at a location θ fires at the instantaneous mean rate described

by the F-I curve fσ (I(θ , t)) as a function of the input current

I(θ , t). Spikes are distributed over the oscillation cycle period T in

proportion to the instantaneous firing rate fσ (I(θ , t)). To obtain a

phase distribution from the instantaneous firing rate over the cycle

period, we performed a change of variables from the time domain

to the phase domain given by the function g̃(φ) = t (see Eqs. 13,

14). The phase density obtained from this change of variables is

pθ (φ) =
fσ (I(θ , g̃(φ))

∫ T
0 fσ (I(θ , t))dt

dg̃

dφ
(φ), (17)

where
dg̃
dφ

(φ) is the change-of-variables Jacobian factor, and

the integral in the denominator is the normalization ensuring
∫ π

−π pθ (φ)dφ = 1. We assume the typical cell at a location θ emits

a Poisson-distributed number of spikes per unit time, with poisson

parameter λθ ≡ T−1〈fσ (I(θ , t))〉T , where 〈·〉 represents a temporal

average over a cycle of time-length T. Analogously, we define spikes

per cycle as λ̂θ = λθT to be emitted by a typical cell, yielding a

discrete Poisson distribution for the number of spikes n in the same

oscillation cycle window T: rθ (n) = λ̂nθ e
−λ̂θ
n! .

We computed two measures of coding performance. The first

examines the discriminability of two θ-stimuli points on the

ring. Without loss of generality, we chose θ = π/2, π/4 for

our two representative points. The discriminable information or

information gain (IG) is defined as the Kullback–Libler divergence

(in nats) DKL(qπ/2||qπ/4) =
∑

z p(z) ln(qπ/2(z)/qπ/4(z)), where

z = φ and q = p for the phase code and z = n and q = r for

the rate code:

IGφ(π/4 → π/2) = DKL(pπ/2||pπ/4)
IGr(π/4 → π/2) = DKL(rπ/2||rπ/4).

(18)

The IG (Eq. 18) measures the amount of information learned

about the data distributed according to pπ/2 given one scores data

according to pπ/4, minus the true entropy of the data.

The second measure of coding performance we computed was

the mutual information (MI) between stimulus feature θ and either

the oscillation phase variable φ or the spike count rate variable n.

For concreteness, we chose to represent the stimulus feature across

eight points, which evenly distributed about the ring θk = πk
8 ,

for k = 1, 2, . . . 8. We assume on a “trial” that each of the eight

stimuli was equally likely to occur, in which case, the probability

of each stimuli was 1/8. The MI then can be constructed to be

the Kullback–Libler divergence from the joint phase distribution

pθk = 1
8

∑8
j=1 pθj (φ)δjk (where δjk is the Kronecker delta) to the

marginal distribution over the θk stimuli: p̄(φ) = 1
8

∑8
j=1 pθj (φ)

and similarly for the rate code. This formula can be generalized to

any number of points on the ring. For each code, the MI is also

expressible in terms of the entropy H of the average phase (rate)
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code across the stimuli, minus the average entropy of each phase

(rate) code at a given stimulus point:

MIφ(π/2;π/4) = DKL(pθk ||p̄) = H(p̄)− 1
n

8
∑

k=1

H(pθk )

MIr(π/2;π/4) = DKL(rθk ||r̄) = H(r̄)− 1
8

8
∑

k=1

H(rθk ).

(19)

We simulated the neural field over a 10-s duration time

window over each of the 16 WM and stimulus input value

combinations. For each simulation, using the notch filtered LFP

(10–30 Hz), we segmented the LFP into individual cycles with

individual periods. On each cycle, we computed phase and

rate encoding distributions and computed the aforementioned

information performance measures IG and MI and examined the

average and variability across cycle trials and conditions.

Numerical methods

All numerical simulations and calculations were performed

using custom-writtenMatlab (Natick,MA) code. Simulations of DE

models utilized a fixed step time of 1t = 0.02 ms. Simulations of

the two-variable neural mass model without noise were performed

using a standard Matlab “ode23” DE solver. Notably, the F-I curve

we used involved solving the mean first passage time (Eqs. 4, 5)

that consisted of nested integrals, which would be numerically

inefficient to function-call on each time step. Instead, we computed

these curves once over a fine mesh and used a cubic spline fit in lieu

of the exact solution.

Stochastic simulations of the LIF spiking model network model

were computed using the Euler–Maruyamamethod, and an explicit

2nd-order Heun’s method was used for all deterministic variables,

with1t = 0.02

The neural field model was simulated by partitioning the

orientation tuning domain in 360 equally spaced grid points

along the θ ∈ [0,π) domain. An explicit 2nd-order Heun’s

method was used for all deterministic variables, while noise input

was computed each using a first-order explicit Euler–Maruyama

method (Gardiner, 2009).

Results

Analysis of neural mass model

The main question we address in this article is how oscillatory

and non-oscillatory sensory representations in neural populations

can be modulated by top-down input. In order to do so, we

first investigate a e- and i-cell recurrent network that supports

oscillations in isolation, termed the neural mass model. Then, in

the following section we construct a neural fieldmodel consisting of

many of these e- and i-cell subpopulations that will support sensory

coding.

We derived a mean field model of these spiking networks

characterized by a 2D nonlinear system of DEs (Eq. 1) that describe

themean activity of the e- and i-cell populations, in which themean

firing rate is dictated by a firing rate function—the F-I curve—

as a function of input current. The F-I curve fσ (I) was defined

as the firing rate of an LIF model cell subject to noise input with

strength σ (see Eqs. 4–6), and are shown in Figure 1A for several

σ -values. The curves show good correspondence to the firing rates

obtained fromMonte Carlo simulations of the LIF cells. Increasing

σ increases firing rates overall, resulting in an leftward translation

of the curves. In addition, increasing σ has the effect of reducing

the firing rate gain
dfσ
dI

at any fixed firing rate fσ (Figure 1B; see for

instance Chance et al., 2002; Ferguson and Cardin, 2020).

The we searched for oscillatory instabilities in our neural mass

model (Eq. 1) by performing a wide parameter scan over I-σ

combinations. For each I-σ combination, we located equilibria and

computed linear stability. Figure 1C shows there is an unstable

region in I-σ -space where an eigen-analysis returns positive real

part eigenvalues of the linearized system. Parameter pairs (I, σ ) that

move upward to the right produce increased mean e-cell firing rate

(Figure 1D). Entering the left-side of the unstable region in I-σ -

space from left to right, yields a supercritical Hopf bifurcation (see

magenta-dashed line, where the Lyapunov coefficient is negative).

Moving left to right through the bifurcation (see example brown-

line trajectory) also results in oscillations with frequencies in

the β-range 12–30 Hz (Figure 1E), whose amplitudes increase

continuously from zero (Figure 1F).

The neural mass model is was derived as a simplified

representation of the dynamics of a large-N spiking model

consisting of excitatory and inhibitory LIF model neurons. The

mean field model predicts that oscillations can emerge from

increasing mean input I (for a fixed σ = 5.5), depicted by the

brown line in Figure 1F. Sample solutions of the neural mass

model are shown for three input levels (I = −2.45,−2.3,−2.15)

in Figure 2A, one below the bifurcation where a equilibrium

solution is stable, one slightly past the bifurcation point where

small-amplitude oscillations emerge, and one further past the

bifurcation where larger-amplitude oscillations are observed. Using

the same input levels and shared parameter settings, we also

simulated a LIF spiking network model (Ne,Ni = 20, 000).

These stochastic simulations show a correspondence to the neural

mass model solutions. At the lower input level, weak fluctuations

exist, reflecting the fluctuation-driven spiking in the finite-N

networks. At the predicted point of the neural field bifurcation,

the LIF network exhibits emergence of more regular, intermediate-

amplitude oscillations; while increasing input further leads to larger

amplitude oscillations, in a manner similar to the neural mass

model.

Supercritical Hopf bifurcations yield oscillation magnitudes

that are continuous with zero at the point of bifurcation.

Commensurate with the mean field model, we expect that the

large-N LIF spiking network exhibits LFP power spectra that

show an increase in oscillatory power with input. We also expect

the central peak of LFP power to shift to higher frequencies

as input is increased through the predicted bifurcation point.

Figure 2C shows this predicted increase oscillation power and shift

in frequency, both centered in the β-band, over seven input levels

(we interleaved four more input levels between the three depicted

in Figure 2B). This predicted increase in mean LFP oscillation

frequency and oscillatory power in the LIF model network is
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FIGURE 1

An unstable equilibrium, in which oscillations emerge, occurs in a protruding region in I-σ parameter space. (A) F-I curve solutions fσ (I) to Eqs. (4–6),

parameterized by the di�usion noise σ parameter. (B) Increasing σ reduces the overall firing rate gain at a given firing rate dfσ /dI|fσ . (C) The real part

of the smallest-magnitude eigenvalue Re(λk) parameterized by the input I (abscissa), and F-I curve gain parameter σ (ordinate). There is a subregion

where the eigenvalues are complex ω = Im(λk) 6= 0, in which crossing into the instability region produces a supercritical Hopf bifurcation (magenta

dashed line). (D) Moving from left to right and from low, to high, the mean firing rate increases in a continuous manner, both outside and inside the

unstable region. (E) Inside the unstable region, the oscillation frequency increases going diagonally up and to the right. (F) The supercritical Hopf

bifurcation elicits oscillation amplitudes that emerge continuously from zero on the upper part of the unstable region. In (D–F) the brown line from

left to right indicates a input parameter path of interest where oscillations emerge via supercritical Hopf in which mean firing rate, oscillation

frequency, and weak amplitude oscillations increase continuously from zero.

summarized in Figures 2D, E, respectively, and shows a strong

correspondence to those computed for the neural mass model.

Note, however, that the LIF networkmodel exhibits non zero power

for input levels below the bifurcation point; whereas the neural

mass model oscillatory power is necessarily zero. This is naturally

due to the LIF network being a stochastic simulation in which

case we expect small fluctuations. Such sub-threshold transient

oscillatory behavior has been suggested to endow networks with

useful function (Palmigiano et al., 2017). Importantly, just above

the bifurcation point, there is good correspondence between the

oscillatory frequency and power of the neural mass and LIF spiking

model.

Phase and rate representations of stimulus
inputs in the neural field model

The neural field model is a spatially extended neural mass

model (see Coombes et al., 2014) with a ring connection topology,

designed to represent an orientation tuning domain in which

nearby regions on the ring are preferentially connected. We tuned

each point on the ring to be near the supercritical Hopf instability

that we identified in the neural mass model. In the absence of

any θ-dependent input, the neural field exhibits a bulk oscillation

(Figure 3A top panel; see alsoMosheiff et al., 2023) due to the lateral

connections in the network producing oscillation syncrony across

the ring. The synaptic weight function W(θ) (see Eq. 11, centered

at π /2 for convenience) is also depicted in Figure 3A (left sub panel

of top panel). Three types of external inputs were given to the

neural field: stimulus-like inputs, WM-like inputs, and temporally

fluctuating random inputs (see Eqs. 15, 16).

Stimulus-like inputs are tuned to preferentially activate one θ-

tuned region of the ring over other regions. These θ-tuned stimulus

inputs induce changes to the time course of the bulk oscillation as

well as mean firing rates across the ring. For example, Figure 3A

(bottom panel) shows e-cell activity with the π/2-tuned input

producing a temporal bend in the oscillation across the ring arising

from elevated input in regions centered about θ = π/2. The

synaptic input function S(θ) (Eq. 12) is depicted along with W(θ)

in Figure 3A (left sub panel of bottom panel). This input induced

the oscillation to initiate sooner in regions near π/2 relative to

elsewhere on the ring.

To illustrate the effect of featured tuned inputs on the relative

timing of oscillatory activity across the ring, we chose two stimulus

features on the ring, a favored feature θ = π/2 from which we

discriminate from the unfavored feature θ = π/4 (see Figure 3

top panel, yellow, red-dash, respectively), and from which we have

defined a two-point discrimination task (see below). At these two
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FIGURE 2

The emergence of oscillations through increased input in the neural mass model corresponds similar emergent oscillations in the large-N LIF spiking

network model from which the neural mass model was derived. (A) Sample solution trajectories of the neural mass model at three ascending input

levels (I = −2.45,−2.3,−2.15) one below the bifurcation (lower panel), one just slightly above (middle), and one further beyond (top). (B) The large-N

(Ne,Ni = 20, 000) LIF spiking network driven at the same inputs and parameter settings as the neural mass model in (A). (C) The power spectrum of

the large-N LIF model over seven input levels (four more levels interleaved between the three illustrated in (A, B) shows that increasing input I

produces greater oscillatory power, and a shift toward higher frequencies within the β-oscillatory band. (D, E) The mean oscillation frequency and

oscillatory power, respectively, computed from the power spectra in (C) for the LIF spiking network, and the neural mass model.

positions on the ring, the mean instantaneous firing rate curves

fσ (I(t)) are shown in Figure 3B for no-stimulus (top panel) in which

the two features exhibit the exact same rate dynamics as the bulk

oscillation. When stimulus centered at θ = π/2 is given, the firing

rate of the favored feature exhibits a larger amplitude peak that

occurs earlier than peak at the unfavored location (bottom panel).

The oscillatory phase angle of the neural field is defined

by the phase decomposition φ(t) of the LFP proxy signal (via

Hilbert transform, see Methods). Here, LFP is defined as the

mean e-cell input over the entire ring (Mazzoni et al., 2015).

Figure 3C shows the phase-distributions at the θ = π/2 and

π/4 locations (see Eq. 18). Consistent with the firing rate time

courses (in Figure 3B) the phase distributions reflect that without

stimulus input, the phase distributions are identical (top). A

stimulus input at θ = π/2 produces more spikes to occur

earlier in the neural field model’s oscillatory cycle and is more

sharply peaked than the phase distribution at the unfavored

feature θ = π/4.

Note that while the phase signatures of the stimulus are salient

to the eye in Figure 3C, the changes to the average firing rate over

the cycle are very weak. Figure 3D shows the differences in the spike

count distributions that defines the rate code in the stimulus and

no-stimulus conditions. Naturally, the no-stimulus case has zero

difference between spike count distributions; however, even while

the peak firing rate during the oscillation cycle differs by about

3 Hz between the favored and unfavored locations (see Figure 3B

bottom), the spike count distributions over the entire cycle differ by

at most∼ 1×10−2, which is small relative to the phase distribution

differences.

In contrast with stimulus inputs, WM-like inputs are global,

uniform over the ring. Increases to global WM input (with WM

input random fluctuations, see Methods) to the neural field ring

produces increases in LFP peak power and frequency in the beta

band (Figure 3E). Finally, WM input has a positive effect on

mean firing rate of the ring (Figure 3F), and mean spike phase

locking (SPL; Figure 3G; SPL is 1 minus the circular variance).

These effects observed in the neural field model are consistent

with the constituent neural mass model, and are also consistent

with experimentally observed WM-driven changes observed in

extrastriate areas (Bahmani et al., 2018).

Finally, temporally fluctuating random inputs were included to

simulations that we used to perform our sensory coding analyses

(see below). We included these noise inputs to elicit a broad

sampling of oscillatory frequencies and amplitudes, particularly

near the deterministic bifurcation.

Sensory coding performance of phase and
rate codes

We sought a rigorous way to discriminate representations of

activity between stimulus features on the ring θ by representing

the neural field model solution dynamics based on two coding

schemes: an oscillatory code, and a spike rate code. Specifically,

we wanted to determine how stimulus discrimination performance

was affected by stimulus contrast level as well as the WM-input

levels. For both of the coding schemes, we computed two measures
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FIGURE 3

The neural field model replicates oscillatory behaviors observed in sensory areas during WM tasks. (A) The neural field e-cell oscillatory dynamics

over its feature space in the presence of no stimulus (top), depicted along with the weight kernel W (top left sub panel; see Eq. 11). In the presence of

a stimulus S (bottom, left sub panel red curve; see Eq. 12), the e-cells exhibit an oscillation with a bend located at the stimulus location. Two example

stimulus feature locations θ = π/2,π/4 are shown on the ring in the top panel, yellow, red-dash, respectively. Neural field model example simulations

exhibit phase locked oscillations across the ring, but preferred stimulus exhibits earlier activity. (B) e-cell firing rate on ring at the two example

locations over 100ms simulation time for increasing stimulus contrast from no-stimulus (top) and with-stimulus (bottom). (C) The associated spike

phase distributions for the same two example stimulus features as in (B) in no-stimulus and with-stimulus (top and bottom). (D) The di�erence in

spike count distributions between the two example stimulus features in no-stimulus and with-stimulus conditions shows weak (∼ 10−3) average

spike count changes due to stimulus, while peak firing rate during an oscillatory cycle exhibits 3Hz di�erences between stimuli [see (B), bottom].

(E–G) Increases in WM input produce LFP peak power and LFP frequency increases, mean firing rate increases, and increased in SPL, respectively.

of coding performance. First, we computed the IG [see Methods

(Eq. 18), also termed the relative entropy or Kullback-Libler

divergence], measuring the discrimination information between

two representative points on the ring: θ = π/2 and π/4. Second, we

computedMI (Eq. 19) between the stimulus ring location variable θ

and the neural activity representation variable—either phase or rate

representations.We computed these measures over each oscillation

cycle of the model-generated data from 10 s of simulation, to

generate averages and standard deviations for each performance

measure.

The IG is a simple means of assessing amount of information

one gains from observing data obtained from the π/2-

parameterized distribution if one had a initially assumed the

data came from the π/4-parameterized source. Greater IG

underlies greater statistical discrimination power from which one

can formulate a decision threshold to detect the π/2 stimulus over

π/4. Figure 4A shows the IG measure for both the phase code

(warm colors) and spike rate code (cooler colors) on ordinate log

scale. Naturally, increasing contrast improves performance across

all WM-input levels; although the zero contrast discrimination

performance was, of course, zero, and was not shown on the

log scale. Interestingly, WM-input increases produce positive

enhancements in the phase code across all non zero contrast

levels. Conversely, the spike rate code shows the opposite effect—a

reduction of coding performance results fromWM input increases.

The insets show the same data as a function of contrast level

in linear ordinate scale, which reveals that increasing WM

input enhances stimulus contrast gain in the phase code, while

simultaneously reducing the spike rate code gain. Note also that the

phase code over all contrasts and WM levels was about two orders

of magnitude larger than that of the spike rate code. These effects

were significant: over three factors of the choice of code—phase or

rate—as well as the 0–3 input levels for WM, and the 0–3 stimulus

contrast levels all produced significant isolated effects on coding

performance, as well as significant interaction effects when tested

in a three-factor ANOVA (p = 0 for all factors and interactions).

The finding that information coding performance is reduced

for the spike rate code in the presence of WM signals can be

attributed to the manner in which Poisson-based spike codes

depend on baseline firing rate λ0. WM inputs are global across

the neural field and slightly increase the overall baseline firing rate:

1λ0. Likewise, the stimulus in our setup produces another small

change 1λs in the average firing rate between the two stimuli-

locations θ on the neural field. It is a standard result in information

theory that Poisson information gain scales as IG ≈ 1
2
1λ2s
λ0

. So,

the information gain is inversely proportional to baseline firing λ0.
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Thus, any elevation of baseline λ0 → λ0 + 1λ0 by WM inputs

undercuts discrimination performance:
1λ2s

λ0+1λ0 <
1λ2s
λ0

. That is,

this change in baseline firing 1λ0 due to WM input makes any

stimulus driven change 1λs less discriminable through a divisive

normalization by λ0 (Reynolds and Heeger, 2009).

The MI is a complementary means of assessing coding

performance that measures the amount of information shared

between the stimulus features over multiple points across the ring

and the neural field readout of the phase and count distributions—

an MI value of 1 would mean that spike data observations (phase

or count) completely determine which stimulus is present. We

used eight evenly spaced points across the ring to achieve broad

coverage. The MI measure results are qualitatively similar in all

respects to the IG measure (Figure 4B). Just as with IG, the MI

measure depended significantly on the three factors: choice of code,

WM level, and contrast level, as well as significant interaction

effects between all factors when tested in a three-factor ANOVA

(p = 0, for all factors and interactions).

Discussion

In this article we sought to address how oscillatory changes

observed in sensory areas during WM input can possibly enhance

oscillatory representations of sensory activity—the phase code—

given that mean rate changes associated with WM are weak or

nonexistent (Bahmani et al., 2018). To achieve a realistic phase

code, we chose a model—our neural mass model—that satisfied the

requirement that cortical spikes be only modestly phase locked to

the LFP β-oscillation, and the model oscillationmust be modulated

byWM-like input in a similar fashion to experimental findings. We

were able to satisfy to these requirements, and achieve the requisite

enhancement of the phase code in response to elevated WM input,

by having our model tuned at the point of a certain type of

oscillatory instability: a supercritical Hopf point. At this instability

point,WM input produces a weak amplitude oscillation continuous

with zero. Such weak amplitude oscillations are consistent with

experimental findings that cells exhibit weak or intermediate phase

locking to the β-band of the LFP, in contrast with large-amplitude

oscillations that would necessarily produce strong phase locking

and synchrony. The model was derived from, and well-described

by, a large-N LIF recurrent network of e- and i-cell populations

driven by noise input.

By joining a continuum neural mass models into a neural field

model across a spatial domain θ that represented a stimulus feature,

we could preferentially stimulate areas of the domain to create

sensory representations in the neural activity (Ben-Yishai et al.,

1997; Shriki et al., 2003; Coombes et al., 2014). Both oscillatory

and mean rate based representations—the phase and rate codes—

were assessed using information theoretic measures as a function

of stimulus contrast andWM-input level. The main effect we found

was that increasingWM input increased phase coding performance

while rate coding performance decreased. WM also produced an

enhancement of contrast gain for the phase code, and a decrease

in contrast gain for the rate code. The phase coding performance,

owing to the larger information capacity of the continuous phase

variable relative to the discrete-valued rate code, was also about two

orders of magnitude larger than the rate coding performance.

The mechanism by which WM enhances phase code

representations is due to the connection between oscillation

amplitude and phase certainty. Specifically, the phase code pθ (φ)

is a one-to-one transformation with the e-cell firing rate curve

fσ (Ie(t, θ)) defined over the oscillation cycle t ∈ [0,T], at a

feature θ . This one-to-one map from φ ∈ [−π ,π] to t ∈ [0,T]

provided a link between oscillation amplitude and phase certainty:

WM-driven oscillations with larger amplitude tended to produce

spikes in a more concentrated period of time, yielding larger spike

phase locking, which in turn, translated to greater probabilistic

certainty (reduced variance) in the phase variable. Naturally,

reduction of variance makes any two θ-value-indexed densities

pθ (φ) discriminated more readily in the presence of a stimulus.

In contrast to phase coding, the information coding decline

of the rate code as a function of WM can be accounted for

by the nature of Poisson spiking: information discrimination

of small firing rate changes from λ0 to λ0 + 1λ is inversely

proportional to the baseline firing λ0; therefore, WM input that

slightly elevates baseline firing λ0 has the effect of undercutting

coding performance.

This link between increased oscillation amplitude and

increased phase certainty and enhanced information gain was

independent of mean firing rate over the oscillation cycle. In our

representation of neural activity, the spike rate code is a distinct

channel of information from the phase code because the neural

activity is readily segmented into the constant and oscillating

components of the cycle activity in a Fourier decomposition,

respectively: fσ (Ie(t, θ)) = λ +
(
∑∞

n=1 cne
i
nπ
T t + CC

)

, where λ is

the mean firing rate (i.e., the DC mode of the firing rate oscillatory

cycle). While we can associate two distinct codes as distinct Fourier

features of the neural oscillation, how exactly global WM input can

modulate both mean cycle activity λ and the oscillatory features cn
in a coordinated fashion is not fully understood. Specifically, more

study is needed to understand how discriminable information is

allocated to these distinct channels, as well as how this allocation

could be controlled by inputs. In the model we studied here, the

overwhelming majority share of discriminable information was

allocated to the phase code channel while the mean rate λ exhibited

comparably little change in response to stimulus or WM inputs.

That our neural field model exhibits a relaxation oscillation offers a

plausible explanation for this divergent information allocation: the

e-cell rising phase of the cycle is stopped by the i-cell-driven falling

phase that partly offsets e-cell firing activity, yielding less average

firing rate gain, and so less rate coding performance from an input.

This information about an input is still available in the phase

variable, encoded the timing of the rise-then-fall phase relative to

other parts of the neural field (see Nesse et al., 2021b for a similar

perspective on rate coding performance loss through intracellular

adaptation in single neuron spike coding).

In our model, we have relied on noise driven spiking of

the constituent LIF cells whose average synaptic dynamics is

described by our neural mass and field models. Endogenous

network fluctuations in the finite-N networks were not explicitly

accounted for in cell inputs, but clamped to a specific white noise

level σ . This noise-clamping enabled us to locate supercritical-

Hopf oscillatory instabilities in the I-σ parameter space of the

neural mass model. This limiting case, where noise is a fixed

exogenous input, is distinct from network models in which mean
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FIGURE 4

Divergent sensory discrimination performance is exhibited by the phase and rate codes as a function of WM input. (A) IG measure shows

enhancement for the phase code across all non-zero stimulus contrasts while the rate code is reduced, measured on a log ordinate scale. Insets of

(A) The same data as the main panel but plotted on a ordinate linear scale as a function of contrast, which shows increasing WM input enhances the

coding gain as a function of contrast while reducing rate coding gain for the same WM increases. (B) Qualitatively similar results to (A) but for the MI

coding performance measure. All error bars reflect standard deviations.

and co-variability of cells is self-consistently solved for to obtain

asynchronous steady states (Moreno-Bote et al., 2008; di Volo et al.,

2019; Sanzeni et al., 2020). It is unknown to us if networks derived

under such self-consistency constraints can support the emergent

oscillations that we studied here.

The results of this modeling study have applications to sensory

areas of the brain that are known to receive signals that reflect

the content of WM. Consistent with the present modeling results,

previous work by our group in areas V4 and MT of the Macaque,

has identified that WM signals induce changes in both the

oscillatory power, peak-power frequency of LFPs in the α-β band,

as well as modulating the occurrence of spikes at certain phases of

the LFP oscillation. Also consistent with our results here, it was

simultaneously observed that such WM signals to V4-MT elicit

small changes to mean firing rate that may not readily account for

the observed cognitive benefits produced by WM (Bahmani et al.,

2018). The mechanism by which WM modulates phase certainty

through amplitude modulations, as well as the prospect of storing

vastly more stimulus information in the phase code relative to the

rate code, suggests a possible way in which the cognitive benefits

of WM are mediated. Note however, that our rate representations

of stimuli assumed uncorrelated Poisson spiking that does not

account for neuronal correlations that have been shown to be

modulated by cognitive states (Cohen and Maunsell, 2009) and

it is unknown how such a correlation modulation compares to

the phase code modulations we have studied here. Additionally,

the potential we have identified for greater sensory information to

be contained oscillatory representations begs the question of how

such representations are read out by downstream targets. We do

not address that question here. Certainly, read out of phase coded

information by downstream brain areas is more complicated than

the transfer of rate-coded information, but potential mechanisms

have been proposed (Comeaux et al., 2023).
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