49 research outputs found

    The Effects of Scallop Dredge Fishing Practices on Physical, Behavioral, and Physiological Stress in Discarded Yellowtail Flounder, Windowpane, and Fourspot Flounder

    Get PDF
    The Atlantic sea scallop Placopecten magellanicus dredge fishery is one of the most lucrative commercial fishing industries in the northeastern United States, and fish bycatch can comprise up to ~42% of the total catch. Benthic species, such as flatfish, are particularly susceptible to unintended capture in scallop dredge gear, and mitigating bycatch and associated mortality has been mandated a priority for fisheries management. Based on this management need, the present study evaluated the physical, physiological, and behavioral stress responses of Yellowtail Flounder Limanda ferruginea, Windowpane Scophthalmus aquosus, and Fourspot Flounder Paralichthys oblongus to capture in the scallop dredge fishery. More specifically, we used generalized additive models and linear regression models to assess the influence of various fishing practices, environmental conditions, and biological factors on injury condition, physiological parameters, and reflex indicators. Although these flatfish species appeared to be physically resilient to capture based on an observable injury assessment, dredge capture and handling factors proved stressful, with the degree of immediate mortality, physiological disturbances, and reflex impairment varying by species. While multiple factors influenced the degree of stress in these species, based on our results the reduction of tow duration and limiting air exposure/sorting duration would likely be the most effective strategies to mitigate the impact of scallop dredge fishing on these flatfish specie

    End-to-end foodweb control of fish production on Georges Bank

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in ICES Journal of Marine Science: Journal du Conseil 66 (2009): 2223-2232, doi:10.1093/icesjms/fsp180.The ecosystem approach to management requires the productivity of individual fish stocks to be considered in the context of the entire ecosystem. In this paper, we derive an annual end-to-end budget for the Georges Bank ecosystem, based on data from the GLOBEC program and fisheries surveys for the years 1993-2002. We use this budget as the basis to construct scenarios that describe the consequences of various alterations in the Georges Bank trophic web: reduced nutrient input, increased benthic production, removal of carnivorous plankton such as jellyfish, and changes in species dominance within fish guilds. We calculate potential yields of cod and haddock for the different scenarios, and compare the results with historic catches and estimates of maximum sustainable yield (MSY) from recent stock assessments. The MSYs of cod and haddock can be met if the fish community is restructured to make them the dominant species in their respective diet-defined guilds. A return to the balance of fish species present in the first half of the 20th century would depend on an increase in the fraction of primary production going to the benthos rather than to plankton. Estimates of energy flux through the Georges Bank trophic web indicate that rebuilding the principal groundfish species to their MSY levels requires restructuring of the fish community and repartitioning of energy within the food web.We acknowledge NOAA-CICOR award NA17RJ1233 (J.H. Steele) and NSF award OCE0217399 (D.J. Gifford and J.S. Collie)

    Diel Variations in Survey Catch Rates and Survey Catchability of Spiny Dogfish and their Pelagic Prey in the Northeast US Continental Shelf Large Marine Ecosystem

    Get PDF
    This study examines the potential uncertainty in survey biomass estimates of Spiny Dogfish Squalus acanthias in the Northeast U.S. Continental Shelf Large Marine Ecosystem (NES LME). Diel catch-per-unit-effort (CPUE) estimates are examined from the Northeast Fisheries Science Center bottom trawl surveys conducted during autumn (1963-2009) and spring (1968-2009). Influential environmental variables on survey catchability are identified for Spiny Dogfish life history stages and five pelagic prey species: Butterfish Peprilus triacanthus, Atlantic Herring Clupea harengus, shortfin squid Illex spp., longfin squid Doryteuthis spp., and Atlantic Mackerel Scomber scombrus. Daytime survey catchability was significantly higher than nighttime catchability for most species during autumn and for mature male Spiny Dogfish, shortfin squid, and longfin squid during spring in the NES LME. For most stages and species examined, breakpoint analyses identified significant increases in CPUE in the morning, peak CPUE during the day, and significant declines in CPUE in the late afternoon. Seasonal probabilities of daytime catch were largely driven by solar zenith angle for most species, with stronger trends identified during autumn. Unadjusted CPUE estimates appear to overestimate absolute abundance, with adjustments resulting in reductions in absolute abundance ranging from 41% for Spiny Dogfish to 91% for shortfin and longfin squids. These findings have important implications for Spiny Dogfish regarding estimates of population consumption of key pelagic prey species and their ecological footprint within the NES LME

    Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish

    Get PDF
    Recent advances in the application of stock identification methods have revealed inconsistencies between the spatial structure of biological populations and the definition of stock units used in assessment and management. From a fisheries management perspective, stocks are typically assumed to be discrete units with homogeneous vital rates that can be exploited independently of each other. However, the unit stock assumption is often violated leading to spatial mismatches that can bias stock assessment and impede sustainable fisheries management. The primary ecological concern is the potential for overexploitation of unique spawning components, which can lead to loss of productivity and reduced biodiversity along with destabilization of local and regional stock dynamics. Furthermore, ignoring complex population structure and stock connectivity can lead to misperception of the magnitude of fish productivity, which can translate to suboptimal utilization of the resource. We describe approaches that are currently being applied to improve the assessment and management process for marine fish in situations where complex spatial structure has led to an observed mismatch between the scale of biological populations and spatially-defined stock units. The approaches include: (i) status quo management, (ii) "weakest link" management, (iii) spatial and temporal closures, (iv) stock composition analysis, and (v) alteration of stock boundaries. We highlight case studies in the North Atlantic that illustrate each approach and synthesize the lessons learned from these real-world applications. Alignment of biological and management units requires continual monitoring through the application of stock identification methods in conjunction with responsive management to preserve biocomplexity and the natural stability and resilience of fish species.</p
    corecore