106 research outputs found

    Coccolithophore biodiversity controls carbonate export in the Southern Ocean

    Get PDF
    Southern Ocean waters are projected to undergo profound changes in their physical and chemical properties in the coming decades. Coccolithophore blooms in the Southern Ocean are thought to account for a major fraction of the global marine calcium carbonate (CaCO3) production and export to the deep sea. Therefore, changes in the composition and abundance of Southern Ocean coccolithophore populations are likely to alter the marine carbon cycle, with feedbacks to the rate of global climate change. However, the contribution of coccolithophores to CaCO3 export in the Southern Ocean is uncertain, particularly in the circumpolar subantarctic zone that represents about half of the areal extent of the Southern Ocean and where coccolithophores are most abundant. Here, we present measurements of annual CaCO3 flux and quantitatively partition them amongst coccolithophore species and heterotrophic calcifiers at two sites representative of a large portion of the subantarctic zone. We find that coccolithophores account for a major fraction of the annual CaCO3 export, with the highest contributions in waters with low algal biomass accumulations. Notably, our analysis reveals that although Emiliania huxleyi is an important vector for CaCO3 export to the deep sea, less abundant but larger species account for most of the annual coccolithophore CaCO3 flux. This observation contrasts with the generally accepted notion that high particulate inorganic carbon accumulations during the austral summer in the subantarctic Southern Ocean are mainly caused by E. huxleyi blooms. It appears likely that the climate-induced migration of oceanic fronts will initially result in the poleward expansion of large coccolithophore species increasing CaCO3 production. However, subantarctic coccolithophore populations will eventually diminish as acidification overwhelms those changes. Overall, our analysis emphasizes the need for species-centred studies to improve our ability to project future changes in phytoplankton communities and their influence on marine biogeochemical cycles.info:eu-repo/semantics/publishedVersio

    Photosynthetic activity and population dynamics of Amoebobacter purpureus in a meromictic saline lake

    Get PDF
    Abstract A dense population of the purple sulfur bacterium Amoebobacter purpureus in the chemocline of meromictic Mahoney Lake (British Columbia, Canada) underwent consistent changes in biomass over a two year study period. The integrated amount of bacteriochlorophyll reached maxima in August and declined markedly during early fall. Bacteriochlorophyll was only weakly correlated with the light intensity and water temperature in the chemocline. In the summer, bacterial photosynthesis was limited by sulfide availability. During this period the intracellular sulfur concentration of A. purpureus cells decreased. A minimum concentration was measured at the top of the bacterial layer in August, when specific photosynthetic rates of A. purpureus indicated that only 14% of the cells were photosynthetically active. With the exception of a time period between August and September, the specific growth rates calculated from CO2 fixation rates of A. purpureus were similar to growth rates calculated from actual biomass changes in the bacterial layer. Between August and September 86% of the A. purpureus biomass disappeared from the chemocline and were deposited on the littoral sediment of Mahoney Lake or degraded within the mixolimnion. This rise of cells to the lake surface was not mediated by an increase in the specific gas vesicle content which remained constant between April and November. The upwelling phenomenon was related to the low sulfur content of A. purpureus cells and a low resistance of surface water layers against vertical mixing by wind

    Full annual monitoring of Subantarctic Emiliania huxleyi populations reveals highly calcified morphotypes in high-CO2 winter conditions

    Get PDF
    Datos de investigación en: http://hdl.handle.net/10366/143074[EN]Ocean acidifcation is expected to have detrimental consequences for the most abundant calcifying phytoplankton species Emiliania huxleyi. However, this assumption is mainly based on laboratory manipulations that are unable to reproduce the complexity of natural ecosystems. Here, E. huxleyi coccolith assemblages collected over a year by an autonomous water sampler and sediment traps in the Subantarctic Zone were analysed. The combination of taxonomic and morphometric analyses together with in situ measurements of surface-water properties allowed us to monitor, with unprecedented detail, the seasonal cycle of E. huxleyi at two Subantarctic stations. E. huxleyi subantarctic assemblages were composed of a mixture of, at least, four diferent morphotypes. Heavier morphotypes exhibited their maximum relative abundances during winter, coinciding with peak annual TCO2 and nutrient concentrations, while lighter morphotypes dominated during summer, coinciding with lowest TCO2 and nutrients levels. The similar seasonality observed in both time-series suggests that it may be a circumpolar feature of the Subantarctic zone. Our results challenge the view that ocean acidifcation will necessarily lead to a replacement of heavily-calcifed coccolithophores by lightly-calcifed ones in subpolar ecosystems, and emphasize the need to consider the cumulative efect of multiple stressors on the probable succession of morphotypes.European Union's Horizon 2020, Marie Skłodowska-Curie Individual fellowshi

    Full annual monitoring of Subantarctic Emiliania huxleyi populations reveals highly calcified morphotypes in high-CO2 winter conditions [Dataset]

    Get PDF
    [EN]Supplement Table S1. a. Sampling dates and morphotype relative abundance of E. huxleyi coccolith assemblages collected in the surface layer at the SOTS site. b. Sampling intervals, fluxes and morphotype relative abundance and morphometric measurements of E. huxleyi coccolith assemblages intercepted by the sediment traps at the SOTS and SAM sites. Table S2. Environmental parameters measured at the surface layer of the SOTS site from August 2011 to July 2012.European Union's Horizon 2020, Marie Skłodowska-Curie Individual fellowshipThe dataset includes Supplementary Information, Table S1. : abundance, composition and morphometric data of E. huxleyi coccolith assemblages generated during the current study Table S2: environmental data Environmental parameters measured at the surface layer of the SOTS site from August 2011 to July 2012

    Arabidopsis Plasmodesmal Proteome

    Get PDF
    The multicellular nature of plants requires that cells should communicate in order to coordinate essential functions. This is achieved in part by molecular flux through pores in the cell wall, called plasmodesmata. We describe the proteomic analysis of plasmodesmata purified from the walls of Arabidopsis suspension cells. Isolated plasmodesmata were seen as membrane-rich structures largely devoid of immunoreactive markers for the plasma membrane, endoplasmic reticulum and cytoplasmic components. Using nano-liquid chromatography and an Orbitrap ion-trap tandem mass spectrometer, 1341 proteins were identified. We refer to this list as the plasmodesmata- or PD-proteome. Relative to other cell wall proteomes, the PD-proteome is depleted in wall proteins and enriched for membrane proteins, but still has a significant number (35%) of putative cytoplasmic contaminants, probably reflecting the sensitivity of the proteomic detection system. To validate the PD-proteome we searched for known plasmodesmal proteins and used molecular and cell biological techniques to identify novel putative plasmodesmal proteins from a small subset of candidates. The PD-proteome contained known plasmodesmal proteins and some inferred plasmodesmal proteins, based upon sequence or functional homology with examples identified in different plant systems. Many of these had a membrane association reflecting the membranous nature of isolated structures. Exploiting this connection we analysed a sample of the abundant receptor-like class of membrane proteins and a small random selection of other membrane proteins for their ability to target plasmodesmata as fluorescently-tagged fusion proteins. From 15 candidates we identified three receptor-like kinases, a tetraspanin and a protein of unknown function as novel potential plasmodesmal proteins. Together with published work, these data suggest that the membranous elements in plasmodesmata may be rich in receptor-like functions, and they validate the content of the PD-proteome as a valuable resource for the further uncovering of the structure and function of plasmodesmata as key components in cell-to-cell communication in plants

    Roles of discharge and temperature in recruitment of a cold-water fish, the European grayling Thymallus thymallus, near its southern range limit

    Get PDF
    Recruitment of salmonids is a result of density-dependent factors, specifically egg production in the previous year, and density-independent environmental processes driven by discharge and temperature. With the plethora of knowledge on major drivers of Atlantic salmon Salmo salar and brown trout Salmo trutta recruitment, there is a requirement to explore less known species, such as European grayling Thymallus thymallus, whose postemergence time coincides with period of increasing temperature and low discharge. This study assessed drivers of grayling recruitment in a southern English chalk stream, a system vulnerable to discharge and temperature alterations under future climate change predictions. The analyses explored age 0+ grayling survival in relation to conspecific and heterospecific densities and discharge- and temperature-derived factors. The final mixed-effects model revealed a positive relationship between age 0+ grayling survival and incubation temperature anomaly and age 0+ trout abundance. Similarly, postincubation temperature anomaly had a positive effect on 0+ grayling survival, but only up to a threshold temperature of 13.5°C, beyond which it had a negative effect. In contrast, increasing number of days with low discharge postincubation negatively influenced age 0+ grayling survival, with no evidence of an effect of elevated discharges following spawning. Our results emphasise the importance of maintaining natural discharge regimes in salmonid rivers by tackling multiple stressors operating at the catchment scale, including land and water use to mitigate for predicted climate driven changes. In addition, further research on recruitment drivers in less stable, rain-fed systems, is required

    Ecological commonalities among pelagic fishes: comparison of freshwater ciscoes and marine herring and sprat

    Get PDF
    Systematic comparisons of the ecology between functionally similar fish species from freshwater and marine aquatic systems are surprisingly rare. Here, we discuss commonalities and differences in evolutionary history, population genetics, reproduction and life history, ecological interactions, behavioural ecology and physiological ecology of temperate and Arctic freshwater coregonids (vendace and ciscoes, Coregonus spp.) and marine clupeids (herring, Clupea harengus, and sprat, Sprattus sprattus). We further elucidate potential effects of climate warming on these groups of fish based on the ecological features of coregonids and clupeids documented in the previous parts of the review. These freshwater and marine fishes share a surprisingly high number of similarities. Both groups are relatively short-lived, pelagic planktivorous fishes. The genetic differentiation of local populations is weak and seems to be in part correlated to an astonishing variability of spawning times. The discrete thermal window of each species influences habitat use, diel vertical migrations and supposedly also life history variations. Complex life cycles and preference for cool or cold water make all species vulnerable to the effects of global warming. It is suggested that future research on the functional interdependence between spawning time, life history characteristics, thermal windows and genetic differentiation may profit from a systematic comparison of the patterns found in either coregonids or clupeids

    Migratory behaviour of juvenile rainbow trout, Salmo gairdneri, in outlet and inlet streams of Loon Lake, British Columbia

    No full text
    The marked differences in response to water current, exhibited by juvenile rainbow trout migrating into Loon Lake from its outlet and inlet streams, were studied both in the field and in experimental laboratory apparatus. All available evidence argued against genetically discrete outlet and inlet stocks, each maintaining different innate responses to water current. Difference in water temperature between streams was shown, in field and laboratory experiments, to regulate direction of juvenile trout migration through action on behaviour associated with downstream movement, maintenance of position and upstream movement. In laboratory experiments with cool (5°, 10° C.) flowing water, recently emerged fry rarely made contact with the stream bottom in darkness and exhibited much more downstream movement than in warm (> 14°C.) water. In cool streams of the Loon Lake system (daily mean consistently < 13°C.) large numbers of recently emerged fry moved downstream in darkness. Laboratory experiments indicated that combination of cool water (10°C.) and long day length (sixteen hours) induced downstream movement of fingerlings. In the field, fingerlings moved downstream largely in late spring and summer in cool streams of the Loon Lake system. In laboratory experiments with warm (15°, 20°C.) flowing water, recently emerged fry made frequent contact with the stream bottom in darkness and exhibited much less downstream movement than in cool (10°C.) water. In the warm outlet stream (daily mean in summer usually > 15°C.) recently emerged fry maintained position in darkness. Laboratory experiments suggested that short day length (eight hours) may facilitate maintenance of position exhibited by fingerlings in streams during late autumn and winter. Upstream movement of fry tested in the field and laboratory was most pronounced in warm water (>14°C). Fingerlings subjected to rapid 5°C. increases in water temperature in an experimental stream exhibited an immediate increase in upstream movement. Upstream movement in summer of large fry and fingerlings occurred only in the warm outlet stream; daily periodicity of upstream movement was positively correlated with sharp rises in water temperature. Evidence examined from four other widely separated stream systems indicated an environmental control of migration in juvenile rainbow trout similar to that demonstrated in the Loon Lake stream system. Possible mechanisms and interaction of factors controlling migratory patterns between and within streams are discussed. Significance of the predominant role played by temperature is considered.Science, Faculty ofZoology, Department ofGraduat

    An analysis of variation in quantitative sampling of bottom fauna in lakes

    No full text
    Transformation of counts and weights of bottom fauna to either logarithims or square roots was required before application of statistical analyses. Preliminary analyses indicated that variability associated with relatively restricted sampling in a large lake prevented reliable evaluation of the bottom fauna while variability evident in extensive sampling from a large lake was not so great as to prevent reasonably precise estimation of abundance. Further analyses showed that the degree of variability was affected by regional location, depth, changes in abundance of the fauna, and qualitative composition of the fauna. Examination of factors contributing to sampling variability showed that operation of the Ekman-Birge dredge, distinction and delimitation of sampling zones in respect to depth and bottom substrate, diurnal and seasonal changes, and the size of samples all were of importance. The use of Ekman-Birge dredge with more powerful jaws in conjunction with more rigorous horizontal and vertical stratification of sampling was suggested as a means of reducing extreme variability in sampling. A 70 per cent sodium silicate solution was found to provide an effective separation of bottom organisms from certain types of substrate. Predation by fish was suggested as responsible for the significant littoral minimum evident in abundance of bottom organisms in Hatzic lake.Science, Faculty ofZoology, Department ofGraduat
    • …
    corecore