19 research outputs found

    Dana Michele Murphy and Christopher Reed Norris in a Joint Senior Recital

    Get PDF
    This is the program for the joint senior voice recital of mezzo-soprano Dana Michele Murphy and tenor Christopher Reed Norris. Pianist Mary Worthen accompanied Murphy; pianist Christy Burleson accompanied Norris. The recital took place on October 26, 1989, in the Mabee Fine Arts Center Recital Hall

    Home and Online Management and Evaluation of Blood Pressure (HOME BP) using a digital intervention in poorly controlled hypertension: randomised controlled trial

    Get PDF
    Objective: The HOME BP (Home and Online Management and Evaluation of Blood Pressure) trial aimed to test a digital intervention for hypertension management in primary care by combining self-monitoring of blood pressure with guided self-management. Design: Unmasked randomised controlled trial with automated ascertainment of primary endpoint. Setting: 76 general practices in the United Kingdom. Participants: 622 people with treated but poorly controlled hypertension (>140/90 mm Hg) and access to the internet. Interventions: Participants were randomised by using a minimisation algorithm to self-monitoring of blood pressure with a digital intervention (305 participants) or usual care (routine hypertension care, with appointments and drug changes made at the discretion of the general practitioner; 317 participants). The digital intervention provided feedback of blood pressure results to patients and professionals with optional lifestyle advice and motivational support. Target blood pressure for hypertension, diabetes, and people aged 80 or older followed UK national guidelines. Main outcome measures: The primary outcome was the difference in systolic blood pressure (mean of second and third readings) after one year, adjusted for baseline blood pressure, blood pressure target, age, and practice, with multiple imputation for missing values. Results: After one year, data were available from 552 participants (88.6%) with imputation for the remaining 70 participants (11.4%). Mean blood pressure dropped from 151.7/86.4 to 138.4/80.2 mm Hg in the intervention group and from 151.6/85.3 to 141.8/79.8 mm Hg in the usual care group, giving a mean difference in systolic blood pressure of −3.4 mm Hg (95% confidence interval −6.1 to −0.8 mm Hg) and a mean difference in diastolic blood pressure of −0.5 mm Hg (−1.9 to 0.9 mm Hg). Results were comparable in the complete case analysis and adverse effects were similar between groups. Within trial costs showed an incremental cost effectiveness ratio of £11 ($15, €12; 95% confidence interval £6 to £29) per mm Hg reduction. Conclusions: The HOME BP digital intervention for the management of hypertension by using self-monitored blood pressure led to better control of systolic blood pressure after one year than usual care, with low incremental costs. Implementation in primary care will require integration into clinical workflows and consideration of people who are digitally excluded. Trial registration: ISRCTN13790648

    Minimizing Formaldehyde Use in the Synthesis of Gold−Silver Core−Shell Nanoparticles

    No full text
    The majority of formaldehyde used in the synthesis of gold−silver core−shell nanoparticles does not function as a reducing agent. Instead, the formaldehyde reacts with ammonium hydroxide to form a polymer, which binds to the gold nanoparticle cores and results in an asymmetric coating of silver. The resultant nanoparticles absorb in the near infrared. Understanding this mechanism allowed us to decrease the formaldehyde used 100-fold, providing a greener synthesis

    Minimizing Formaldehyde Use in the Synthesis of Gold−Silver Core−Shell Nanoparticles

    No full text
    Through a careful analysis of the role of formaldehyde in the preparation of silver nanomaterials, a previously unnoticed function of the reagent has been discovered. Formaldehyde reacts with ammonium hydroxide to form a polymer that changes how silver attaches to and coats a substrate. In the case of a gold nanoparticle substrate, this polymer is responsible for creating a nonconcentric core−shell nanoparticle with a near-infrared plasmon resonance at 700 nm. In contrast, when conditions do not favor synthesis of this polymer, concentric nanoparticles are formed that have a plasmon resonance between that of gold and silver at 498 nm. Understanding this second role of formaldehyde allowed us to decrease the amount used 100-fold compared to previous methods, providing a greener synthesis. In addition, it is shown that ascorbic acid can function as a partial substitute for formaldehyde in this synthesis. This strategy may be effective at minimizing or eliminating formaldehyde from the synthesis of other core−shell nanoparticles and nanoshells, facilitating their use in medical applications

    Infilled Ditches are Hotspots of Landscape Methane Flux Following Peatland Re-wetting

    Get PDF
    Peatlands are large terrestrial stores of carbon, and sustained CO2 sinks, but over the last century large areas have been drained for agriculture and forestry, potentially converting them into net carbon sources. More recently, some peatlands have been re-wetted by blocking drainage ditches, with the aims of enhancing biodiversity, mitigating flooding, and promoting carbon storage. One potential detrimental consequence of peatland re-wetting is an increase in methane (CH4) emissions, offsetting the benefits of increased CO2 sequestration. We examined differences in CH4 emissions between an area of ditch-drained blanket bog, and an adjacent area where drainage ditches were recently infilled. Results showed that Eriophorum vaginatum colonization led to a “hotspot” of CH4 emissions from the infilled ditches themselves, with smaller increases in CH4 from other re-wetted areas. Extrapolated to the area of blanket bog surrounding the study site, we estimated that CH4 emissions were around 60 kg CH4 ha−1 y−1 prior to drainage, reducing to 44 kg CH4 ha−1 y−1 after drainage. We calculated that fully re-wetting this area would initially increase emissions to a peak of around 120 kg CH4 ha−1 y−1, with around two-thirds of the increase (and 90% of the increase over pre-drainage conditions) attributable to CH4 emissions from E. vaginatum-colonized infilled ditches, despite these areas only occupying 7% of the landscape. We predicted that emissions should eventually decline toward pre-drainage values as the ecosystem recovers, but only if Sphagnum mosses displace E. vaginatum from the infilled ditches. These results have implications for peatland management for climate change mitigation, suggesting that restoration methods should aim, if possible, to avoid the colonization of infilled ditches by aerenchymatous species such as E. vaginatum, and to encourage Sphagnum establishment
    corecore