50 research outputs found

    Strahlenhärtetests mit Neutronen an large area APDs für das elektromagnetische Kalorimeter des PANDA-Detektors

    Get PDF
    Die Suche nach einem geeigneten Photosensor für das PANDA-Experiment wurde durch folgende Anforderungen eingegrenzt: • Tauglichkeit in einem starken Magnetfeld • Funktionsfähigkeit trotz niedriger Temperatur • geringe Bauhöhe • interne Verstärkungsstufe wegen der geringen Lichtausbeute von PbWO4 • stabiler Betrieb trotz hoher Strahlenbelastung Diese Punkte werden von Large Area Avalanche-Photodioden (LAAPDs) erfüllt. Da diese Si-Halbleiterdioden im laufenden Experiment einer hohen Strahlenbelastung ausgesetzt sein werden, ist es erforderlich, die Strahlenhärte im Vorfeld intensiv zu testen. Im Rahmen dieser Diplomarbeit wurden Strahlenhärtetests mit geladenen und neutralen Teilchen an (inter-)nationalen Instituten und der Universität Frankfurt durchgeführt, wobei das Hauptaugenmerk auf der Neutronenbestrahlung lag. Dazu wurde eine Messvorrichtung entwickelt und funktionstüchtig aufgebaut, mit der dann die Messungen an fünf verschiedenen Dioden mit einer Kapazität von 180 pF vorgenommen wurden. Während der Bestrahlung wurde der Dunkelstrom in Abhängigkeit von der Bestrahlungszeit bei konstanten Temperaturen gemessen. Vor und nach den Tests wurden die APD-Parameter charakterisert, um später durch den Vergleich der Daten Aussagen zur Strahlenhärte der Photodetektoren machen zu können. Die Ergebnisse und Vergleiche zeigen, dass die APDs nach der Bestrahlung mit Photonen weiterhin gut funktionieren. Die Quantenausbeute verändert sich nicht. Der durch Protonen- (Rate ≈ 1013 p/cm2 (90 MeV) und Neutronenbestrahlung (Rate ≈ 1010 n/cm2 (1 MeV) und 1014 n/cm2 (14 MeV)) erzeugte hohe Dunkelstrom der APDs ist aufgrund seiner Temperaturabhängigkeit und den Ausheilungseffekte reduzierbar. Es ist zu erwarten, dass die APDs im laufenden Experimentbetrieb trotz dieser Strahlung funktionsfähig bleiben werden. Sobald die mit Neutronen bestrahlten APDs abgeklungen sind, werden ihre Parameter zum Vorher-/Nachher-Vergleich vermessen. Dazu gehören der Dunkelstrom in Abhängigkeit von der Verstärkung, die Verstärkung in Abhängigkeit von der Spannung und Wellenlänge und die Quantenausbeute. Um die Ausheilung bestrahlter Photodioden in Abhängigkeit von der Temperatur genauer zu bestimmen, sollen sie (unter Vorspannung) in einem Ofen bei T = 80◦C ausgebacken werden, bis der Dunkelstrom sich wieder in einem Gleichgewicht befindet. Nach diesem Vorgang werden dann alle APD-Parameter noch einmal vermessen, um einen Vergleich mit den Werten vor der Bestrahlung zu ziehen. Neben diesen nachbereitenden Arbeiten wird an ersten rechteckigen APD-Prototypen, die sich in der Entwicklungsphasen befinden, geforscht. An diesen außergewöhnlich großen APDs müssen alle an den quadratischen Photodioden bereits durchgeführten und noch folgenden Tests ebenfalls vorgenommen werden

    Gas system, gas quality monitor and detector control of the ALICE Transition Radiation Detector and studies for a pre-trigger data read-out system

    Get PDF
    The main purpose of the Transition Radiation Detector (TRD) located in the central barrel of ALICE (A Large Ion Collider Experiment) is electron identification for separation from pions at momenta pt > 1 GeV/c, since in this momentum range the measurements of the specific energy loss (dE/dx) of the Time Projection Chamber (TPC) is no longer sufficient. Furthermore, it provides a fast trigger for high transverse momentum charged particles (pt > 3 GeV/c) and makes a significant contribution to the optimization of the tracking of reaction products in heavy-ion collisions. Its whole setup comprises 18 supermodules out of which 13 are presently operational and mounted cylindrically around the beam axis of the Large Hadron Collider (LHC). A supermodule contains either 30 or 24 chambers, each consisting of a radiator for transition radiation creation, a drift and an amplifying region followed by the read-out electronics. In total, the TRD is an array of 522 chambers operated with about 28 m3 of a Xe-CO2 [85-15%] gas mixture. During the work of this thesis, the testing, commissioning, operation and maintenance of detector parts, the gas system and its online quality monitor, improvements on the detector control user-interface and studies about a new pre-trigger module for data read-out have been accomplished. The TRD gas system mixes, distributes and circulates the operational gas mixture through the detector. Its overall optimization has been achieved by minimizing gas leakage, surveying, controlling, maintaining and continuously improving it as well as designing and carrying out upgrades. Gas quality monitors of the type \GOOFIE" (Gas prOportional cOunter For drIfting Electrons) can be used in gaseous detectors as on-line monitors of the electron drift velocity, gain and gas properties. One of these devices has been implemented within the TRD gas system, while another one surveys the gas of the TPC. Both devices had to be adapted to the specific needs of the detectors, were under constant surveillance and control, and needed to be further developed on both hardware and software side. To improve the operation of the TRD, modifications on its DCS software (Detector Control System) used for monitoring, controlling, operating, regulating and configuring of hardware and computing devices have been carried out. The DCS is designed to enable an operator to interact with equipment through user interfaces that display the information from the system. The main focus of this work was laid on the optimization of the usability and design of the user interface. The front-end electronics of the TRD require an early start signal (\pre-trigger") from the fast forward detectors or the Time-Of-Flight detector during the running periods. The realization of a new hardware concept for the read-out of the TRD pre-trigger system has been studied and first tests were performed. This new module called PIMDDL (Pre-trigger Interface Module Detector Data Link) is meant to acquire all data necessary to simulate and predict the full pre-trigger functionality, and to verify its proper operation. Furthermore, it shall provide all functionalities of the so-called Control Box Bottom as well as keep the functionalities of the already existing PIM (Pre-trigger Interface Module) in order to combine and replace these two modules in the future

    Validation of an all-sky imager based nowcasting system for industrial PV plants

    Get PDF
    Because of the cloud-induced variability of the solar resource, the growing contributions of photovoltaic plants to the overall power generation challenges the stability of electricity grids. To avoid blackouts, administrations started to define maximum negative ramp rates. Storages can be used to reduce the occurring ramps. Their required capacity, durability, and costs can be optimized by nowcasting systems. Nowcasting systems use the input of upward-facing cameras to predict future irradiances. Previously, many nowcasting systems were developed and validated. However, these validations did not consider aggregation effects, which are present in industrial-sized power plants. In this paper, we present the validation of nowcasted global horizontal irradiance (GHI) and direct normal irradiance maps derived from an example system consisting of 4 all-sky cameras (“WobaS-4cam”). The WobaS-4cam system is operational at 2 solar energy research centers and at a commercial 50-MW solar power plant. Besides its validation on 30 days, the working principle is briefly explained. The forecasting deviations are investigated with a focus on temporal and spatial aggregation effects. The validation found that spatial and temporal aggregations significantly improve forecast accuracies: Spatial aggregation reduces the relative root mean square error (GHI) from 30.9% (considering field sizes of 25 m2) to 23.5% (considering a field size of 4 km2) on a day with variable conditions for 1 minute averages and a lead time of 15 minutes. Over 30 days of validation, a relative root mean square error (GHI) of 20.4% for the next 15 minutes is observed at pixel basis (25 m2). Although the deviations of nowcasting systems strongly depend on the validation period and the specific weather conditions, the WobaS-4cam system is considered to be at least state of the art

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Gas system, gas quality monitor and detector control of the ALICE Transition Radiation Detector and studies for a pre-trigger data read-out system

    No full text
    The main purpose of the Transition Radiation Detector (TRD) located in the central barrel of ALICE (A Large Ion Collider Experiment) is electron identification for separation from pions at momenta pt > 1 GeV/c, since in this momentum range the measurements of the specific energy loss (dE/dx) of the Time Projection Chamber (TPC) is no longer sufficient. Furthermore, it provides a fast trigger for high transverse momentum charged particles (pt > 3 GeV/c) and makes a significant contribution to the optimization of the tracking of reaction products in heavy-ion collisions. Its whole setup comprises 18 supermodules out of which 13 are presently operational and mounted cylindrically around the beam axis of the Large Hadron Collider (LHC). A supermodule contains either 30 or 24 chambers, each consisting of a radiator for transition radiation creation, a drift and an amplifying region followed by the read-out electronics. In total, the TRD is an array of 522 chambers operated with about 28 m3 of a Xe-CO2 [85-15%] gas mixture. During the work of this thesis, the testing, commissioning, operation and maintenance of detector parts, the gas system and its online quality monitor, improvements on the detector control user-interface and studies about a new pre-trigger module for data read-out have been accomplished. The TRD gas system mixes, distributes and circulates the operational gas mixture through the detector. Its overall optimization has been achieved by minimizing gas leakage, surveying, controlling, maintaining and continuously improving it as well as designing and carrying out upgrades. Gas quality monitors of the type GOOFIE" (Gas prOportional cOunter For drIfting Electrons) can be used in gaseous detectors as on-line monitors of the electron drift velocity, gain and gas properties. One of these devices has been implemented within the TRD gas system, while another one surveys the gas of the TPC. Both devices had to be adapted to the specific needs of the detectors, were under constant surveillance and control, and needed to be further developed on both hardware and software side. To improve the operation of the TRD, modifications on its DCS software (Detector Control System) used for monitoring, controlling, operating, regulating and configuring of hardware and computing devices have been carried out. The DCS is designed to enable an operator to interact with equipment through user interfaces that display the information from the system. The main focus of this work was laid on the optimization of the usability and design of the user interface. The front-end electronics of the TRD require an early start signal (pre-trigger") from the fast forward detectors or the Time-Of-Flight detector during the running periods. The realization of a new hardware concept for the read-out of the TRD pre-trigger system has been studied and first tests were performed. This new module called PIMDDL (Pre-trigger Interface Module Detector Data Link) is meant to acquire all data necessary to simulate and predict the full pre-trigger functionality, and to verify its proper operation. Furthermore, it shall provide all functionalities of the so-called Control Box Bottom as well as keep the functionalities of the already existing PIM (Pre-trigger Interface Module) in order to combine and replace these two modules in the future

    Large Area APDs for the PANDA EMC

    No full text

    Where Brain, Body and World Collide

    Get PDF
    The production cross section of electrons from semileptonic decays of beauty hadrons was measured at mid-rapidity (|y| < 0.8) in the transverse momentum range 1 < pt < 8 Gev/c with the ALICE experiment at the CERN LHC in pp collisions at a center of mass energy sqrt{s} = 7 TeV using an integrated luminosity of 2.2 nb^{-1}. Electrons from beauty hadron decays were selected based on the displacement of the decay vertex from the collision vertex. A perturbative QCD calculation agrees with the measurement within uncertainties. The data were extrapolated to the full phase space to determine the total cross section for the production of beauty quark-antiquark pairs
    corecore