243 research outputs found

    Contact inhibition of locomotion and mechanical cross-talk between cell-cell and cell-substrate adhesion determines the pattern of junctional tension in epithelial cell aggregates

    Full text link
    We generated a computational approach to analyze the biomechanics of epithelial cell aggregates, either island or stripes or entire monolayers, that combines both vertex and contact-inhibition-of-locomotion models to include both cell-cell and cell-substrate adhesion. Examination of the distribution of cell protrusions (adhesion to the substrate) in the model predicted high order profiles of cell organization that agree with those previously seen experimentally. Cells acquired an asymmetric distribution of basal protrusions, traction forces and apical aspect ratios that decreased when moving from the edge to the island center. Our in silico analysis also showed that tension on cell-cell junctions and apical stress is not homogeneous across the island. Instead, these parameters are higher at the island center and scales up with island size, which we confirmed experimentally using laser ablation assays and immunofluorescence. Without formally being a 3-dimensional model, our approach has the minimal elements necessary to reproduce the distribution of cellular forces and mechanical crosstalk as well as distribution of principal stress in cells within epithelial cell aggregates. By making experimental testable predictions, our approach would benefit the mechanical analysis of epithelial tissues, especially when local changes in cell-cell and/or cell-substrate adhesion drive collective cell behavior.Comment: 39 pages, 8 Figures. Supplementary Information is include

    Hadron Energy Reconstruction for the ATLAS Calorimetry in the Framework of the Non-parametrical Method

    Get PDF
    This paper discusses hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter (consisting of a lead-liquid argon electromagnetic part and an iron-scintillator hadronic part) in the framework of the non-parametrical method. The non-parametrical method utilizes only the known e/he/h ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to an easy use in a first level trigger. The reconstructed mean values of the hadron energies are within ±1\pm 1% of the true values and the fractional energy resolution is [(58±3)/E+(2.5±0.3)[(58\pm3)% /\sqrt{E}+(2.5\pm0.3)%]\oplus (1.7\pm0.2)/E. The value of the e/he/h ratio obtained for the electromagnetic compartment of the combined calorimeter is 1.74±0.041.74\pm0.04 and agrees with the prediction that e/h>1.7e/h > 1.7 for this electromagnetic calorimeter. Results of a study of the longitudinal hadronic shower development are also presented. The data have been taken in the H8 beam line of the CERN SPS using pions of energies from 10 to 300 GeV.Comment: 33 pages, 13 figures, Will be published in NIM

    Semi-automated Magnetic Bead-Based Antibody Selection from Phage Display Libraries

    Get PDF
    Phage display of combinatorial antibody libraries is a very efficient method for selecting recombinant antibodies against a wide range of molecules. It has been applied very successfully for the generation of therapeutic antibodies for more than a decade. To increase robustness and reproducibility of the selection procedure, we developed a semi-automated selection method for the generation of recombinant antibodies from phage display libraries. In this procedure, the selection targets are specifically immobilised to magnetic particles which can then by automatically handled by a magnetic particle processor. At present up to 96 samples can be handled simultaneously. Applying the processor allows standardisation of panning parameters such as washing conditions, incubation times, or to perform parallel selections on same targets under different buffer conditions. Additionally, the whole protocol has been streamlined to carry out bead loading, phage selection, phage amplification between selection rounds and magnetic particle ELISA for confirmation of binding activity in microtiter plate formats. Until now, this method has been successfully applied to select antibody fragments against different types of target, such as peptides, recombinant or homologous proteins, or chemical compounds

    Testosterone metabolism in Neomysis integer following exposure to benzo(a)pyrene

    Get PDF
    Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 144 (2006): 405-412, doi:10.1016/j.cbpb.2006.04.001.Cytochromes P450 (CYPs) are important enzymes involved in the regulation of hormone synthesis and in the detoxification and/or activation of xenobiotics. CYPs are found in virtually all organisms, from archae, and eubacteria to eukaryota. A number of endocrine disruptors are suspected of exerting their effects through disruption of normal CYP function. Consequently, alterations in steroid hormone metabolism through changes in CYP could provide an important tool to evaluate potential effects of endocrine disruptors. The aim of this study was to investigate the potential effects of the known CYP modulator, benzo(a)pyrene (B(a)P), on the testosterone metabolism in the invertebrate Neomysis integer (Crustacea; Mysidacea). N. integer were exposed for 96h to 0.43, 2.39, 28.83, 339.00 and 1682.86μg B(a)P L-1 and a solventcontrol, and subsequently their ability to metabolize testosterone was assessed. Identification and quantification of the produced phase I and phase II testosterone metabolites was performed using liquid chromatography coupled with multiple mass spectrometry (LC-MS2). Significant changes were observed in the overall ability of N. integer to metabolize testosterone when exposed to 2.39, 28.83, 339.00 and 1682.86μg B(a)P L-1 as compared to the control animals.This research was supported by a research grant of the Ghent University Research Fund (BOF, 011.072.02). Dr. Tim Verslycke was supported by a Postdoctoral Fellowship of the Belgian American Educational Foundation

    Observation of the Early Structural Changes Leading to the Formation of Protein Superstructures.

    Get PDF
    Formation of superstructures in protein aggregation processes has been indicated as a general pathway for several proteins, possibly playing a role in human pathologies. There is a severe lack of knowledge on the origin of such species in terms of both mechanisms of formation and structural features. We use equine lysozyme as a model protein, and by combining spectroscopic techniques and microscopy with X-ray fiber diffraction and ab initio modeling of Small Angle X-ray Scattering data, we isolate the partially unfolded state from which one of these superstructures (i.e., particulate) originates. We reveal the low-resolution structure of the unfolded state and its mechanism of formation, highlighting the physicochemical features and the possible pathway of formation of the particulate structure. Our findings provide a novel detailed knowledge of such a general and alternative aggregation pathway for proteins, this being crucial for a basic and broader understanding of the aggregation phenomena.This is the author's accepted manuscript and will be under embargo until the 3rd of September 2015. The final version is published by ACS in The Journal of Physical Chemistry Letters here: http://pubs.acs.org/doi/abs/10.1021/jz501614e

    2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC

    Get PDF
    2016 ESC on Acute and Chronic H

    Results from a combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    Get PDF
    The first combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 20 to 300~GeV at an incident angle θ\theta of about 11^\circ is well-described by the expression \sigma/E = ((46.5 \pm 6.0)\%/\sqrt{E} +(1.2 \pm 0.3)\%) \oplus (3.2 \pm 0.4)~\mbox{GeV}/E. Shower profiles, shower leakage, and the angular resolution of hadronic showers were also studied

    The DIRC Particle Identification System for the BABAR Experiment

    Get PDF
    A new type of ring-imaging Cherenkov detector is being used for hadronic particle identification in the BABAR experiment at the SLAC B Factory (PEP-II). This detector is called DIRC, an acronym for Detection of Internally Reflected Cherenkov (Light). This paper will discuss the construction, operation and performance of the BABAR DIRC in detail
    corecore