64 research outputs found

    Current evidence for a modulation of low back pain by human genetic variants

    Get PDF
    The manifestation of chronic back pain depends on structural, psychosocial, occupational and genetic influences. Heritability estimates for back pain range from 30% to 45%. Genetic influences are caused by genes affecting intervertebral disc degeneration or the immune response and genes involved in pain perception, signalling and psychological processing. This inter-individual variability which is partly due to genetic differences would require an individualized pain management to prevent the transition from acute to chronic back pain or improve the outcome. The genetic profile may help to define patients at high risk for chronic pain. We summarize genetic factors that (i) impact on intervertebral disc stability, namely Collagen IX, COL9A3, COL11A1, COL11A2, COL1A1, aggrecan (AGAN), cartilage intermediate layer protein, vitamin D receptor, metalloproteinsase-3 (MMP3), MMP9, and thrombospondin-2, (ii) modify inflammation, namely interleukin-1 (IL-1) locus genes and IL-6 and (iii) and pain signalling namely guanine triphosphate (GTP) cyclohydrolase 1, catechol-O-methyltransferase, μ opioid receptor (OPMR1), melanocortin 1 receptor (MC1R), transient receptor potential channel A1 and fatty acid amide hydrolase and analgesic drug metabolism (cytochrome P450 [CYP]2D6, CYP2C9)

    Genetic susceptibility of intervertebral disc degeneration among young Finnish adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Disc degeneration (DD) is a common condition that progresses with aging. Although the events leading to DD are not well understood, a significant genetic influence has been found. This study was undertaken to assess the association between relevant candidate gene polymorphisms and moderate DD in a well-defined and characterized cohort of young adults. Focusing on young age can be valuable in determining genetic predisposition to DD.</p> <p>Methods</p> <p>We investigated the associations of existing candidate genes for DD among 538 young adults with a mean age of 19 belonging to the 1986 Northern Finland Birth Cohort. Nineteen single nucleotide polymorphisms (SNP) in 16 genes were genotyped. We evaluated lumbar DD using the modified Pfirrmann classification and a 1.5-T magnetic resonance scanner for imaging.</p> <p>Results</p> <p>Of the 538 individuals studied, 46% had no degeneration, while 54% had DD and 51% of these had moderate DD. The risk of DD was significantly higher in subjects with an allele G of <it>IL6 </it>SNPs rs1800795 (OR 1.45, 95% CI 1.07-1.96) and rs1800797 (OR 1.37, 95% CI 1.02-1.85) in the additive inheritance model. The role of <it>IL6 </it>was further supported by the haplotype analysis, which resulted in an association between the GGG haplotype (SNPs rs1800797, rs1800796 and rs1800795) and DD with an OR of 1.51 (95% CI 1.11-2.04). In addition, we observed an association between DD and two other polymorphisms, <it>SKT </it>rs16924573 (OR 0.27 95% CI 0.07-0.96) and <it>CILP </it>rs2073711 in women (OR 2.04, 95% CI 1.07-3.89).</p> <p>Conclusion</p> <p>Our results indicate that <it>IL6</it>, <it>SKT </it>and <it>CILP </it>are involved in the etiology of DD among young adults.</p

    Neuropathic pain phenotyping by international consensus (NeuroPPIC) for genetic studies: a NeuPSIG systematic review, Delphi survey, and expert panel recommendations

    Get PDF
    For genetic research to contribute more fully to furthering our knowledge of neuropathic pain, we require an agreed, valid, and feasible approach to phenotyping, to allow collaboration and replication in samples of sufficient size. Results from genetic studies on neuropathic pain have been inconsistent and have met with replication difficulties, in part because of differences in phenotypes used for case ascertainment. Because there is no consensus on the nature of these phenotypes, nor on the methods of collecting them, this study aimed to provide guidelines on collecting and reporting phenotypes in cases and controls for genetic studies. Consensus was achieved through a staged approach: (1) systematic literature review to identify all neuropathic pain phenotypes used in previous genetic studies; (2) Delphi survey to identify the most useful neuropathic pain phenotypes and their validity and feasibility; and (3) meeting of experts to reach consensus on the optimal phenotype(s) to be collected from patients with neuropathic pain for genetic studies. A basic “entry level” set of phenotypes was identified for any genetic study of neuropathic pain. This set identifies cases of “possible” neuropathic pain, and controls, and includes: (1) a validated symptom-based questionnaire to determine whether any pain is likely to be neuropathic; (2) body chart or checklist to identify whether the area of pain distribution is neuroanatomically logical; and (3) details of pain history (intensity, duration, any formal diagnosis). This NeuroPPIC “entry level” set of phenotypes can be expanded by more extensive and specific measures, as determined by scientific requirements and resource availability

    A machine-learned analysis of human gene polymorphisms modulating persisting pain points to major roles of neuroimmune processes

    Get PDF
    Background Human genetic research has implicated functional variants of more than one hundred genes in the modulation of persisting pain. Artificial intelligence and machine-learning techniques may combine this knowledge with results of genetic research gathered in any context, which permits the identification of the key biological processes involved in chronic sensitization to pain. MethodsResultsBased on published evidence, a set of 110 genes carrying variants reported to be associated with modulation of the clinical phenotype of persisting pain in eight different clinical settings was submitted to unsupervised machine-learning aimed at functional clustering. Subsequently, a mathematically supported subset of genes, comprising those most consistently involved in persisting pain, was analysed by means of computational functional genomics in the Gene Ontology knowledgebase. Clustering of genes with evidence for a modulation of persisting pain elucidated a functionally heterogeneous set. The situation cleared when the focus was narrowed to a genetic modulation consistently observed throughout several clinical settings. On this basis, two groups of biological processes, the immune system and nitric oxide signalling, emerged as major players in sensitization to persisting pain, which is biologically highly plausible and in agreement with other lines of pain research. ConclusionsSignificanceThe present computational functional genomics-based approach provided a computational systems-biology perspective on chronic sensitization to pain. Human genetic control of persisting pain points to the immune system as a source of potential future targets for drugs directed against persisting pain. Contemporary machine-learned methods provide innovative approaches to knowledge discovery from previous evidence. We show that knowledge discovery in genetic databases and contemporary machine-learned techniques can identify relevant biological processes involved in Persitent pain.Peer reviewe

    Spinal stenosis and intervertebral disc disease:the role of sequence variations in collagen IX and XI, and inflammatory factors in spinal disorders

    No full text
    Abstract Genetic factors have been implicated to play a role in both degenerative lumbar spinal stenosis (LSS) and intervertebral disc disease (IDD). Sequence variations in the genes coding for collagen IX and inflammatory mediators have been indicated as risk factors for IDD. Nine genes coding for intervertebral disc (IVD) collagens I, II, IX and XI and aggrecan (AGC1) were analyzed for sequence variations in 29 Finnish individuals with LSS. In addition, two polymorphisms in the vitamin D receptor gene and one in the matrix metalloproteinase-3 gene were studied. Study subjects were analyzed both clinically and radiologically. Results indicated an association between the COL11A2 IVS6-4 a to t polymorphism and LSS (p = 0.0016). Moreover, the t/t genotype was found more often in the patient group compared to controls (p = 0.0011). A novel splicing mutation, likely resulting in the synthesis of a truncated protein, was identified in COL9A2. Eight hundred four Chinese individuals were screened for the presence of the Trp2 and Trp3 alleles. The Trp2 allele was found in 20% of the individuals compared to the previously reported 5% in Finnish patients with IDD characterized by sciatica. The Trp2 allele was found to predispose to IVD degeneration and end plate herniations, increasing the risk by 2.4-fold from 40 to 49 years of age. In addition, the degeneration was worse in individuals with the Trp2 allele. The risk for annular tears was 4-fold greater in study subjects from 30 to 39 years of age who were Trp2 positive. Surprisingly, the Trp3 allele was absent even though it was found in about 9% of Finnish individuals. One hundred fifty-five Finnish individuals with IDD characterized by sciatica were analyzed for sequence variations in four genes coding for inflammatory mediators IL1A, IL1B, IL6, and TNFA. In addition, sixteen polymorphisms in inflammatory mediator genes were analyzed. The results identified an association between sciatica and the E5+15T>A polymorphism in IL6 (p = 0.007). A significant association was also seen in the IL6 haplotype analysis (-597 g>a, -572 g>c, -174 g>c and E5+15T>A). The association of the GGGA haplotype with the disease was highly significant (p = 0.0033)

    Sequence variations in the collagen IX and XI genes are associated with degenerative lumbar spinal stenosis

    No full text
    Background: Degenerative lumbar spinal stenosis (LSS) is usually caused by disc herniation or degeneration. Several genetic factors have been implicated in disc disease. Tryptophan alleles in COL9A2 and COL9A3 have been shown to be associated with lumbar disc disease in the Finnish population, and polymorphisms in the vitamin D receptor gene (VDR) (FokI and TaqI), the matrix metalloproteinase-3 gene (MMP-3) and an aggrecan gene (AGC1) VNTR have been reported to be associated with disc degeneration. In addition, an IVS6-4 a>t polymorphism in COL11A2 has been found in connection with stenosis caused by ossification of the posterior longitudinal ligament in the Japanese population. Objective: To study the role of genetic factors in LSS. Methods: 29 Finnish probands were analysed for mutations in the genes coding for intervertebral disc matrix proteins, COL1A1, COL1A2, COL2A1, COL9A1, COL9A2, COL9A3, COL11A1, COL11A2, and AGC1. VDR and MMP-3 polymorphisms were also analysed. Sequence variations were tested in 56 Finnish controls. Results: Several disease associated alleles were identified. A splice site mutation in COL9A2 leading to a premature translation termination codon and the generation of a truncated protein was identified in one proband, another had the Trp2 allele, and four others the Trp3 allele. The frequency of the COL11A2 IVS6(-4) t allele was 93.1% in the probands and 72.3% in controls (p = 0.0016). The differences in genotype frequencies for this site were less significant (p = 0.0043). Conclusions: Genetic factors have an important role in the pathogenesis of LSS
    corecore