122 research outputs found

    Guidelines for the diagnosis and management of chylomicron retention disease based on a review of the literature and the experience of two centers

    Get PDF
    Familial hypocholesterolemia, namely abetalipoproteinemia, hypobetalipoproteinemia and chylomicron retention disease (CRD), are rare genetic diseases that cause malnutrition, failure to thrive, growth failure and vitamin E deficiency, as well as other complications. Recently, the gene implicated in CRD was identified. The diagnosis is often delayed because symptoms are nonspecific. Treatment and follow-up remain poorly defined

    Stromal integrin α11 regulates PDGFRβ signaling and promotes breast cancer progression

    Get PDF
    Cancer-associated fibroblasts (CAFs) are key actors in modulating the progression of many solid tumors, such as breast cancer (BC). Herein, we identify an integrin alpha 11/PDGFR beta-positive CAF subset displaying tumor-promoting features in BC. In the preclinical MMTV-PyMT mouse model, integrin alpha 11 deficiency led to a drastic reduction of tumor progression and metastasis. A clear association between integrin alpha 11 and PDGFR beta was found at both transcriptional and histological levels in BC specimens. High stromal integrin alpha 11/PDGFR beta expression was associated with high grades and poorer clinical outcome in human BC patients. Functional assays using 5 CAF subpopulations (1 murine, 4 human) revealed that integrin alpha 11 promotes CAF invasion and CAF-induced tumor cell invasion upon PDGF-BB stimulation. Mechanistically, the proinvasive activity of integrin alpha 11 relies on its ability to interact with PDGFR beta in a ligand-dependent manner and to promote its downstream JNK activation, leading to the production of tenascin C, a proinvasive matricellular protein. Pharmacological inhibition of PDGFR beta and JNK impaired tumor cell invasion induced by integrin alpha 11 CAFs. Collectively, our study uncovers an integrin alpha 11 subset of protumoral CAFs that exploits the PDGFR beta/JNK signaling axis to promote tumor invasiveness in BC

    Challenges in measuring indicators of progress for the Atlantic Action Plan

    Get PDF
    The EU Atlantic Action Plan (AAP) has recently been updated and revised to support ‘blue growth’ along Europe’s western coastal regions. The revisions reflect recent challenges facing the Atlantic Arc maritime economies including the Covid-19 crisis, Brexit and the new requirements of the European Green Deal. This new revision, termed AAP 2.0, also addresses some of the weaknesses highlighted in the original Atlantic Action Plan particularly regarding identifying indicators that may be used to measure progress in the achievement of the Plan’s objectives. Using a database with comparable marine socio-economic data across the Atlantic regions, a number of indicators are identified that may be used to monitor progress of the AAP 2.0. Recent trends and spatial distributions across the Atlantic Arc region are shown for these indicators. The challenges in measuring progress are also highlighted, including where some AAP objectives and associated indicators may conflict with other EU policy aims and where the current monitoring framework can be bolstered with the inclusion of new indicators

    Genome sequencing of Xanthomonas axonopodis pv. phaseoli CFBP4834-R reveals that flagellar motility is not a general feature of xanthomonads.

    Full text link
    Xanthomonads are plant-associated bacteria that establish neutral, commensal or pathogenic relationships with plants. The list of common characteristics shared by all members of the genus Xanthomonas is now well established based on the entire genome sequences that are currently available and that represent various species, numerous pathovars of X. axonopodis (sensu Vauterin et al., 2000), X. oryzae and X. campestris, and many strains within some pathovars. These ?-proteobacteria are motile by a single polar flagellum. Motility is an important feature involved in biofilm formation, plant colonization and hence considered as a pathogenicity factor. X. axonopodis pv. phaseoli var. fuscans (Xapf) is one of the causal agents of common bacterial blight of bean and 4834-R is a highly aggressive strain of this pathogen that was isolated from a seed-borne epidemic in France in 1998. We obtained a high quality assembled sequence of the genome of this strain with 454-Solexa and 2X Sanger sequencing. Housekeeping functions are conserved in this genome that shares core characteristics with genomes of other xanthomonads: the six secretion systems which have been described so far in Gram negative bacteria are all present, as well as their ubiquitous substrates or effectors and a rather usual number of mobile elements. Elements devoted to the adaptation to the environment constitute an important part of the genome with a chemotaxis island and dispersed MCPs, numerous two-component systems, and numerous TonB dependent transporters. Furthermore, numerous multidrug efflux systems and functions dedicated to biofilm formation that confer resistance to stresses are also present. An intriguing feature revealed by genome analysis is a long deletion of 35 genes (33 kbp) involved in flagellar biosynthesis. This deletion is replaced by an insertion sequence called ISXapf2. Genes such as flgB to flgL and fliC to fleQ which are involved in the flagellar structure (rod, P- and L-ring, hook, cap and filament) are absent in the genome of strain 4834-R that is not motile. Primers were designed to detect this deletion by PCR in a collection of more than 300 strains representing different species and pathovars of Xanthomonas, and less than 5% of the tested xanthomonads strains were found nonmotile because of a deletion in the flagellum gene cluster. We observed that half of the Xapf strains isolated from the same epidemic than strain 4834-R was non-motile and that this ratio was conserved in the strains colonizing the next bean seed generation. Isolation of such variants in a natural epidemic reveals that either flagellar motility is not a key function for fitness or that some complementation occurs within the bacterial population. (Résumé d'auteur

    Mouse Aortic Ring Assay: A New Approach of the Molecular Genetics of Angiogenesis

    Get PDF
    Angiogenesis, a key step in many physiological and pathological processes, involves proteolysis of the extracellular matrix. To study the role of two enzymatic families, serine-proteases and matrix metalloproteases in angiogenesis, we have adapted to the mouse, the aortic ring assay initially developed in the rat. The use of deficient mice allowed us to demonstrate that PAI-1 is essential for angiogenesis while the absence of an MMP, MMP-11, did not affect vessel sprouting. We report here that this model is attractive to elucidate the cellular and molecular mechanisms of angiogenesis, to identify, characterise or screen "pro- or anti-angiogenic agents that could be used for the treatment of angiogenesis-dependent diseases. Approaches include using recombinant proteins, synthetic molecules and adenovirus-mediated gene transfer

    Progression in MCF-7 Breast Cancer Cell Tumorigenicity: Compared Effect of FGF-3 and FGF-4.

    Full text link
    The transforming properties of fibroblast growth factor 3 (FGF-3) were investigated in MCF7 breast cancer cells and compared to those of FGF-4, a known oncogenic product. The short form of fgf-3 and the fgf-4 sequences were each introduced with retroviral vectors and the proteins were only detected in the cytoplasm of the infected cells, as expected. In vitro, cells producing FGF-3 (MCF7.fgf-3) and FGF-4 (MCF7.fgf-4) displayed an amount of estrogen receptors decreased to around 45% of the control value. However, MCF7.fgf-3 cell proliferation remained responsive to estradiol supply. The sensitivity of the MCF7.fgf-4 cells, if existant, was masked by the important mitogenic action exerted by FGF-4. In vivo, the MCF7.fgf-3 and MCF7.fgf-4 cells gave rise to tumors under conditions in which the control cells were not tumorigenic. Supplementing the mice with estrogen had the paradoxical effect of totally suppressing the start of the FGF-3 as well as the FGF-4 tumors. Tumorigenicity in the presence of matrigel was similar for MCF7.fgf-3 and control cells and was increased by estrogen supplementation. Once started, the MCF7.fgf-4 tumors grew with a characteristic high rate. Remarkably, FGF-4 but not FGF-3, stimulated the secretion of vascular endothelial growth factor (VEGF165) without altering the steady-state level of its mRNA, suggesting a possible regulation of VEGF synthesis at the translational level in MCF7 cells. The increased VEGF secretion is probably involved in the more aggressive phenotype of the MCF7.fgf-4 cells while a decreased dependence upon micro-environmental factors might be part of the increased tumorigenic potential of the MCF7.fgf-3 cells.Peer reviewe

    Epigenetic Natural Variation in Arabidopsis thaliana

    Get PDF
    Cytosine methylation of repetitive sequences is widespread in plant genomes, occurring in both symmetric (CpG and CpNpG) as well as asymmetric sequence contexts. We used the methylation-dependent restriction enzyme McrBC to profile methylated DNA using tiling microarrays of Arabidopsis Chromosome 4 in two distinct ecotypes, Columbia and Landsberg erecta. We also used comparative genome hybridization to profile copy number polymorphisms. Repeated sequences and transposable elements (TEs), especially long terminal repeat retrotransposons, are densely methylated, but one third of genes also have low but detectable methylation in their transcribed regions. While TEs are almost always methylated, genic methylation is highly polymorphic, with half of all methylated genes being methylated in only one of the two ecotypes. A survey of loci in 96 Arabidopsis accessions revealed a similar degree of methylation polymorphism. Within-gene methylation is heritable, but is lost at a high frequency in segregating F2 families. Promoter methylation is rare, and gene expression is not generally affected by differences in DNA methylation. Small interfering RNA are preferentially associated with methylated TEs, but not with methylated genes, indicating that most genic methylation is not guided by small interfering RNA. This may account for the instability of gene methylation, if occasional failure of maintenance methylation cannot be restored by other means

    MicroRNA-21 Exhibits Antiangiogenic Function by Targeting RhoB Expression in Endothelial Cells

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are endogenously expressed small non-coding RNAs that regulate gene expression at post-transcriptional level. The recent discovery of the involvement of these RNAs in the control of angiogenesis renders them very attractive in the development of new approaches for restoring the angiogenic balance. Whereas miRNA-21 has been demonstrated to be highly expressed in endothelial cells, the potential function of this miRNA in angiogenesis has never been investigated. METHODOLOGY/PRINCIPAL FINDINGS: We first observed in endothelial cells a negative regulation of miR-21 expression by serum and bFGF, two pro-angiogenic factors. Then using in vitro angiogenic assays, we observed that miR-21 acts as a negative modulator of angiogenesis. miR-21 overexpression reduced endothelial cell proliferation, migration and the ability of these cells to form tubes whereas miR-21 inhibition using a LNA-anti-miR led to opposite effects. Expression of miR-21 in endothelial cells also led to a reduction in the organization of actin into stress fibers, which may explain the decrease in cell migration. Further mechanistic studies showed that miR-21 targets RhoB, as revealed by a decrease in RhoB expression and activity in miR-21 overexpressing cells. RhoB silencing impairs endothelial cell migration and tubulogenesis, thus providing a possible mechanism for miR-21 to inhibit angiogenesis. Finally, the therapeutic potential of miR-21 as an angiogenesis inhibitor was demonstrated in vivo in a mouse model of choroidal neovascularization. CONCLUSIONS/SIGNIFICANCE: Our results identify miR-21 as a new angiogenesis inhibitor and suggest that inhibition of cell migration and tubulogenesis is mediated through repression of RhoB
    corecore