152 research outputs found

    Effect of Chemical Structure on the Electrochemical Cleavage of Alkoxyamines

    Get PDF
    A test set of 14 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)-based alkoxyamines was studied via a combination of cyclic voltammetry and accurate quantum chemistry to assess the effect of substituents on electrochemical cleavage. The experimental oxidation potentials of alkoxyamines falling into the range of 1.1-1.6 V versus Ag/AgCl in acetonitrile, were well reproduced by theory (MAD 0.04 V), with values showing good correlation with the σR Hammett parameters of both the R-group and the OR-group in TEMPO-R. Importantly, most of the studied alkoxyamines underwent oxidative cleavage to form either TEMPO· and R+ or TEMPO+ and R·, with the former favored by electron-donating substituents on R (e.g., 2-oxolane, Ac, CH(CH3)Ph, i-Pr, t-Bu) and the latter by electron withdrawing substituents (Bn, allyl, CH(CH3)C(O)OCH3, C(CH3)2C(O)OCH3, CH(CH3)CN). Where R is not stabilized (e.g., R = CH2C(O)OCH3, Me, Et), fully or almost fully reversible oxidation - without cleavage - was observed, making these species promising candidates for battery applications. Finally, in the case of R = Ph, where N-O cleavage occurred, a phenoxy cation and an aminyl radical were generated. On the basis of these results, TEMPO-based alkoxyamines can provide a variety of electrochemically generated carbon-centered radicals and carbocations for use in synthesis, polymerization, and surface modification

    Mechanism of Oxidative Alkoxyamine Cleavage: The Surprising Role of the Solvent and Supporting Electrolyte

    Get PDF
    In this work, we show that the nature of the supporting electrolyte and solvent can dramatically alter the outcome of the electrochemically mediated cleavage of alkoxyamines. A combination of cyclic voltammetry experiments and quantum chemistry is used to study the oxidation behavior of TEMPO-i-Pr under different conditions. In dichloromethane, using a noncoordinating electrolyte (TBAPF6), TEMPO-i-Pr undergoes reversible oxidation, which indicates that the intermediate radical cation is stable toward mesolytic fragmentation. In contrast, in tetrahydrofuran with the same electrolyte, oxidized TEMPO-i-Pr undergoes a rapid and irreversible fragmentation. In nitromethane and acetonitrile, partially irreversible oxidation is observed, indicating that fragmentation is much slower. Likewise, alkoxyamine oxidation in the presence of more strongly coordinating supporting electrolyte anions (BF4-, ClO4-, OTf-, HSO4-, NO3-) is also irreversible. These observations can be explained in terms of solvent- or electrolyte-mediated SN2 pathways and indicate that oxidative alkoxyamine cleavage can be "activated" by introducing coordinating solvents or electrolytes or be "inhibited" through the use of noncoordinating solvents and electrolytes

    The WEBT BL Lacertae Campaign 2001 and its extension : Optical light curves and colour analysis 1994–2002

    Get PDF
    BL Lacertae has been the target of four observing campaigns by the Whole Earth Blazar Telescope (WEBT) collaboration. In this paper we present UBVRI light curves obtained by theWEBT from 1994 to 2002, including the last, extended BL Lac 2001 campaign. A total of about 7500 optical observations performed by 31 telescopes from Japan to Mexico have been collected, to be added to the ∼15 600 observations of the BL Lac Campaign 2000. All these data allow one to follow the source optical emission behaviour with unprecedented detail. The analysis of the colour indices reveals that the flux variability can be interpreted in terms of two components: longer-term variations occurring on a fewday time scale appear as mildly-chromatic events, while a strong bluer-when-brighter chromatism characterizes very fast (intraday) flares. By decoupling the two components, we quantify the degree of chromatism inferring that longer-term flux changes imply moving along a ∼0.1 bluerwhen- brighter slope in the B − R versus R plane; a steeper slope of ∼0.4 would distinguish the shorter-term variations. This means that, when considering the long-term trend, the B-band flux level is related to the R-band one according to a power law of index ∼1.1. Doppler factor variations on a “convex” spectrum could be the mechanism accounting for both the long-term variations and their slight chromatism.Reig Torres, Pablo, [email protected]

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Pedotransfer functions to predict water retention for soils of the humid tropics: a review

    Full text link

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Overview of the JET results in support to ITER

    Get PDF
    corecore