298 research outputs found

    Object-based analysis of simulated thunderstorms in Switzerland: application and validation of automated thunderstorm tracking with simulation data

    Get PDF
    We present a feasibility study for an object-based method to characterise thunderstorm properties in simulation data from convection-permitting weather models. An existing thunderstorm tracker, the Thunderstorm Identification, Tracking, Analysis and Nowcasting (TITAN) algorithm, was applied to thunderstorms simulated by the Advanced Research Weather Research and Forecasting (AR-WRF) weather model at convection-permitting resolution for a domain centred on Switzerland. Three WRF microphysics parameterisations were tested. The results are compared to independent radar-based observations of thunderstorms derived using the MeteoSwiss Thunderstorms Radar Tracking (TRT) algorithm. TRT was specifically designed to track thunderstorms over the complex Alpine topography of Switzerland. The object-based approach produces statistics on the simulated thunderstorms that can be compared to object-based observation data. The results indicate that the simulations underestimated the occurrence of severe and very large hail compared to the observations. Other properties, including the number of storm cells per day, geographical storm hotspots, thunderstorm diurnal cycles, and storm movement directions and velocities, provide a reasonable match to the observations, which shows the feasibility of the technique for characterisation of simulated thunderstorms over complex terrain

    Modes of Overinitiation, dnaA Gene Expression, and Inhibition of Cell Division in a Novel Cold-Sensitive hda Mutant of Escherichia coli

    Get PDF
    The chromosomal replication cycle is strictly coordinated with cell cycle progression in Escherichia coli. ATP-DnaA initiates replication, leading to loading of the DNA polymerase III holoenzyme. The DNA-loaded form of the {beta} clamp subunit of the polymerase binds the Hda protein, which promotes ATP-DnaA hydrolysis, yielding inactive ADP-DnaA. This regulation is required to repress overinitiation. In this study, we have isolated a novel cold-sensitive hda mutant, the hda-185 mutant. The hda-185 mutant caused overinitiation of chromosomal replication at 25{degrees}C, which most likely led to blockage of replication fork progress. Consistently, the inhibition of colony formation at 25{degrees}C was suppressed by disruption of the diaA gene, an initiation stimulator. Disruption of the seqA gene, an initiation inhibitor, showed synthetic lethality with hda-185 even at 42{degrees}C. The cellular ATP-DnaA level was increased in an hda-185-dependent manner. The cellular concentrations of DnaA protein and dnaA mRNA were comparable at 25{degrees}C to those in a wild-type hda strain. We also found that multiple copies of the ribonucleotide reductase genes (nrdAB or nrdEF) or dnaB gene repressed overinitiation. The cellular levels of dATP and dCTP were elevated in cells bearing multiple copies of nrdAB. The catalytic site within NrdA was required for multicopy suppression, suggesting the importance of an active form of NrdA or elevated levels of deoxyribonucleotides in inhibition of overinitiation in the hda-185 cells. Cell division in the hda-185 mutant was inhibited at 25{degrees}C in a LexA regulon-independent manner, suggesting that overinitiation in the hda-185 mutant induced a unique division inhibition pathway

    Highly sensitive gamma-spectrometers of GERDA for material screening: Part I

    Full text link
    The GERDA experiment aims to search for the neutrinoless double beta-decay of 76Ge and possibly for other rare processes. The sensitivity of the first phase is envisioned to be more than one order of magnitude better than in previous neutrinoless double beta-decay experiments. This implies that materials with ultra-low radioactive contamination need to be used for the construction of the detector and its shielding. Therefore the requirements on material screening include high-sensitivity low-background detection techniques and long measurement times. In this article, an overview of material-screening laboratories available to the GERDA collaboration is given, with emphasis on the gamma-spectrometry. Additionally, results of an intercomparison of the evaluation accuracy in these laboratories are presented.Comment: Featured in: Proceedings of the XIV International Baksan School "Particles and Cosmology" Baksan Valley, Kabardino-Balkaria, Russia, April 16-21,2007. INR RAS, Moscow 2008. ISBN 978-5-94274-055-9, pp. 228-232; (5 pages, 0 figures

    Material screening and selection for XENON100

    Full text link
    Results of the extensive radioactivity screening campaign to identify materials for the construction of XENON100 are reported. This Dark Matter search experiment is operated underground at Laboratori Nazionali del Gran Sasso (LNGS), Italy. Several ultra sensitive High Purity Germanium detectors (HPGe) have been used for gamma ray spectrometry. Mass spectrometry has been applied for a few low mass plastic samples. Detailed tables with the radioactive contaminations of all screened samples are presented, together with the implications for XENON100.Comment: 8 pages, 1 figur

    Complete results for five years of GNO solar neutrino observations

    Get PDF
    We report the complete GNO solar neutrino results for the measuring periods GNO III, GNO II, and GNO I. The result for GNO III (last 15 solar runs) is [54.3 + 9.9 - 9.3 (stat.)+- 2.3 (syst.)] SNU (1 sigma) or [54.3 + 10.2 - 9.6 (incl. syst.)] SNU (1 sigma) with errors combined. The GNO experiment is now terminated after altogether 58 solar exposure runs that were performed between May 20, 1998 and April 9, 2003. The combined result for GNO (I+II+III) is [62.9 + 5.5 - 5.3 (stat.) +- 2.5 (syst.)] SNU (1 sigma) or [62.9 + 6.0 - 5.9] SNU (1 sigma) with errors combined in quadrature. Overall, gallium based solar observations at LNGS (first in GALLEX, later in GNO) lasted from May 14, 1991 through April 9, 2003. The joint result from 123 runs in GNO and GALLEX is [69.3 +- 5.5 (incl. syst.)] SNU (1 sigma). The distribution of the individual run results is consistent with the hypothesis of a neutrino flux that is constant in time. Implications from the data in particle- and astrophysics are reiterated.Comment: 22 pages incl. 9 Figures and 8 Tables. to appear in: Physics Letters B (accepted April 13, 2005) PACS: 26.65.+t ; 14.60.P

    Double-beta decay of 130^{130}Te to the first 0+^{+} excited state of 130^{130}Xe with CUORICINO

    Get PDF
    The CUORICINO experiment was an array of 62 TeO2_{2} single-crystal bolometers with a total 130^{130}Te mass of 11.311.3\,kg. The experiment finished in 2008 after more than 3 years of active operating time. Searches for both 0ν0\nu and 2ν2\nu double-beta decay to the first excited 0+0^{+} state in 130^{130}Xe were performed by studying different coincidence scenarios. The analysis was based on data representing a total exposure of N(130^{130}Te)\cdott=9.5×10259.5\times10^{25}\,y. No evidence for a signal was found. The resulting lower limits on the half lives are T1/22ν(130Te130Xe)>1.3×1023T^{2\nu}_{1/2}(^{130} Te\rightarrow^{130} Xe^{*})>1.3\times10^{23}\,y (90% C.L.), and T1/20ν(130Te130Xe)>9.4×1023T^{0\nu}_{1/2}(^{130} Te\rightarrow^{130} Xe^{*})>9.4\times10^{23}\,y (90% C.L.).Comment: 6 pages, 4 figure

    ZnO-based scintillating bolometers: New prospects to study double beta decay of 64^{64}Zn

    Full text link
    The first detailed study on the performance of a ZnO-based cryogenic scintillating bolometer as a detector to search for rare processes in zinc isotopes was performed. A 7.2 g ZnO low-temperature detector, containing more than 80\% of zinc in its mass, exhibits good energy resolution of baseline noise 1.0--2.7 keV FWHM at various working temperatures resulting in a low-energy threshold for the experiment, 2.0--6.0 keV. The light yield for β\beta/γ\gamma events was measured as 1.5(3) keV/MeV, while it varies for α\alpha particles in the range of 0.2--3.0 keV/MeV. The detector demonstrate an effective identification of the β\beta/γ\gamma events from α\alpha events using time-properties of only heat signals. %(namely, Rise time parameter). The radiopurity of the ZnO crystal was evaluated using the Inductively Coupled Plasma Mass Spectrometry, an ultra-low-background High Purity Ge γ\gamma-spectrometer, and bolometric measurements. Only limits were set at the level of O\mathcal{O}(1--100) mBq/kg on activities of \Nuc{K}{40}, \Nuc{Cs}{137} and daughter nuclides from the U/Th natural decay chains. The total internal α\alpha-activity was calculated to be 22(2) mBq/kg, with a major contribution caused by 6(1) mBq/kg of \Nuc{Th}{232} and 12(2) mBq/kg of \Nuc{U}{234}. Limits on double beta decay (DBD) processes in \Nuc{Zn}{64} and \Nuc{Zn}{70} isotopes were set on the level of O(1017\mathcal{O}(10^{17}--1018)10^{18}) yr for various decay modes profiting from 271 h of acquired background data in the above-ground lab. This study shows a good potential for ZnO-based scintillating bolometers to search for DBD processes of Zn isotopes, especially in \Nuc{Zn}{64}, with the most prominent spectral features at \sim10--20 keV, like the two neutrino double electron capture. A 10 kg-scale experiment can reach the experimental sensitivity at the level of O(1024)\mathcal{O}(10^{24}) yr.Comment: Prepared for submission to JINST; 27 pages, 9 figures, and 7 table

    CUORE and beyond: bolometric techniques to explore inverted neutrino mass hierarchy

    Get PDF
    The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of 130^{130}Te. With 741 kg of TeO2_2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, CUORE will be one of the most competitive neutrinoless double beta decay experiments on the horizon. With five years of live time, CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6×10261.6\times 10^{26} y at 1σ1\sigma (9.5×10259.5\times10^{25} y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40--100 meV (50--130 meV). Further background rejection with auxiliary light detector can significantly improve the search sensitivity and competitiveness of bolometric detectors to fully explore the inverted neutrino mass hierarchy with 130^{130}Te and possibly other double beta decay candidate nuclei.Comment: Submitted to the Proceedings of TAUP 2013 Conferenc
    corecore