4 research outputs found

    Enhanced Photo-Fenton Activity Using Magnetic Cu<sub>0.5</sub>Mn<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> Nanoparticles as a Recoverable Catalyst for Degrading Organic Contaminants

    No full text
    Interest in using various nanoparticle catalysts to activate H2O2 with light for organic contaminant and wastewater treatment is steadily increasing. We successfully synthesized magnetically recoverable Cu0.5Mn0.5Fe2O4 nanoparticles using a simple co-precipitation method followed by melamine-assisted calcination. Material characterization revealed that melamine acted as a coordinating agent during the calcination process that promoted a ferrite structure. Copper (Cu)-substitution effectively decreased material aggregation and promoted catalytic activities. Cu0.5Mn0.5Fe2O4 nanoparticles showed outstanding catalytic performance on several organic contaminants (87.6–100.0% removal within 2 h). Using oxytetracycline (OTC) as a surrogate wastewater constituent, we found that the hydroxyl radical (•OH) and superoxide anions (•O2−) were the active radical species involved in OTC degradation. Cu0.5Mn0.5Fe2O4 nanoparticles exhibited excellent photo-Fenton catalytic ability in real wastewater and demonstrated high material stability, even after four consecutive uses (i.e., fourth cycle). In a pilot-scale experiment (10 L), we provide proof that our rigorous treatment system was able to remove remnant OTC, TOC, and also any available colloidal particles to only 1 NTU. Ecotoxicity studies using an aquatic plant (Hydrilla verticillata) and zooplankton revealed that treated water could be reused in various ratios. Furthermore, at 5% of treated water, rapid leaf recovery and a significant increase in rotifer numbers were reported. These observations support the use of Cu0.5Mn0.5Fe2O4/H2O2/light as an efficient and environmentally friendly catalytic system for treatment of organic contaminants, and a radical generating mechanism is proposed

    Enhanced Photo-Fenton Activity Using Magnetic Cu\u3csub\u3e0.5\u3c/sub\u3eMn\u3csub\u3e0.5\u3c/sub\u3eFe\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e4\u3c/sub\u3e Nanoparticles as a Recoverable Catalyst for Degrading Organic Contaminants

    Get PDF
    Interest in using various nanoparticle catalysts to activate H2O2 with light for organic contaminant and wastewater treatment is steadily increasing. We successfully synthesized magnetically recoverable Cu0.5Mn0.5Fe2O4 nanoparticles using a simple co-precipitation method followed by melamine-assisted calcination. Material characterization revealed that melamine acted as a coordinating agent during the calcination process that promoted a ferrite structure. Copper (Cu)-substitution effectively decreased material aggregation and promoted catalytic activities. Cu0.5Mn0.5Fe2O4 nanoparticles showed outstanding catalytic performance on several organic contaminants (87.6–100.0% removal within 2 h). Using oxytetracycline (OTC) as a surrogate wastewater constituent, we found that the hydroxyl radical (•OH) and superoxide anions (•O2−) were the active radical species involved in OTC degradation. Cu0.5Mn0.5Fe2O4 nanoparticles exhibited excellent photo-Fenton catalytic ability in real wastewater and demonstrated high material stability, even after four consecutive uses (i.e., fourth cycle). In a pilot-scale experiment (10 L), we provide proof that our rigorous treatment system was able to remove remnant OTC, TOC, and also any available colloidal particles to only 1 NTU. Ecotoxicity studies using an aquatic plant (Hydrilla verticillata) and zooplankton revealed that treated water could be reused in various ratios. Furthermore, at 5% of treated water, rapid leaf recovery and a significant increase in rotifer numbers were reported. These observations support the use of Cu0.5Mn0.5Fe2O4/H2O2/light as an efficient and environmentally friendly catalytic system for treatment of organic contaminants, and a radical generating mechanism is proposed

    A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions

    Get PDF
    10.1016/j.scitotenv.2021.147868Science of the Total Environment78814786

    A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions

    No full text
    The threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium- and low-risk categories under current and predicted climate conditions. The 1730 screenings undertaken encompassed wide geographical areas (regions, political entities, parts thereof, water bodies, river basins, lake drainage basins, and marine regions), which permitted thresholds to be identified for almost all aquatic organismal groups screened as well as for tropical, temperate and continental climate classes, and for tropical and temperate marine ecoregions. In total, 33 species were identified as posing a ‘very high risk’ of being or becoming invasive, and the scores of several of these species under current climate increased under future climate conditions, primarily due to their wide thermal tolerances. The risk thresholds determined for taxonomic groups and climate zones provide a basis against which area-specific or climate-based calibrated thresholds may be interpreted. In turn, the risk rankings help decision-makers identify which species require an immediate ‘rapid’ management action (e.g. eradication, control) to avoid or mitigate adverse impacts, which require a full risk assessment, and which are to be restricted or banned with regard to importation and/or sale as ornamental or aquarium/fishery enhancement
    corecore